Description: Restricted quantifier version of 19.26-2 . Version of r19.26 with two quantifiers. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 3 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |