Metamath Proof Explorer


Theorem r19.29

Description: Restricted quantifier version of 19.29 . See also r19.29r . (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 22-Dec-2024)

Ref Expression
Assertion r19.29 ( ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 1 ralrexbid ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 ( 𝜑𝜓 ) ) )
3 2 biimpa ( ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )