Description: Restricted quantifier version of 19.42v (see also 19.42 ). (Contributed by NM, 27-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ 𝜑 ) ) | |
2 | ancom | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) | |
3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜑 ) ) |
4 | ancom | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ 𝜑 ) ) | |
5 | 1 3 4 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |