Metamath Proof Explorer


Theorem r1val3

Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of Monk1 p. 113. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1val3 ( 𝐴 ∈ On → ( 𝑅1𝐴 ) = 𝑥𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )

Proof

Step Hyp Ref Expression
1 r1fnon 𝑅1 Fn On
2 fndm ( 𝑅1 Fn On → dom 𝑅1 = On )
3 1 2 ax-mp dom 𝑅1 = On
4 3 eleq2i ( 𝐴 ∈ dom 𝑅1𝐴 ∈ On )
5 r1val1 ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1𝐴 ) = 𝑥𝐴 𝒫 ( 𝑅1𝑥 ) )
6 4 5 sylbir ( 𝐴 ∈ On → ( 𝑅1𝐴 ) = 𝑥𝐴 𝒫 ( 𝑅1𝑥 ) )
7 onelon ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
8 r1val2 ( 𝑥 ∈ On → ( 𝑅1𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )
9 7 8 syl ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → ( 𝑅1𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )
10 9 pweqd ( ( 𝐴 ∈ On ∧ 𝑥𝐴 ) → 𝒫 ( 𝑅1𝑥 ) = 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )
11 10 iuneq2dv ( 𝐴 ∈ On → 𝑥𝐴 𝒫 ( 𝑅1𝑥 ) = 𝑥𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )
12 6 11 eqtrd ( 𝐴 ∈ On → ( 𝑅1𝐴 ) = 𝑥𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } )