Metamath Proof Explorer


Theorem r3al

Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995) (Proof shortened by Wolf Lammen, 30-Dec-2019)

Ref Expression
Assertion r3al ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2al ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧𝐶 𝜑 ) )
2 19.21v ( ∀ 𝑧 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧𝐶𝜑 ) ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧 ( 𝑧𝐶𝜑 ) ) )
3 df-3an ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) )
4 3 imbi1i ( ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) ↔ ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) → 𝜑 ) )
5 impexp ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) → 𝜑 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧𝐶𝜑 ) ) )
6 4 5 bitri ( ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧𝐶𝜑 ) ) )
7 6 albii ( ∀ 𝑧 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) ↔ ∀ 𝑧 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧𝐶𝜑 ) ) )
8 df-ral ( ∀ 𝑧𝐶 𝜑 ↔ ∀ 𝑧 ( 𝑧𝐶𝜑 ) )
9 8 imbi2i ( ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧𝐶 𝜑 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧 ( 𝑧𝐶𝜑 ) ) )
10 2 7 9 3bitr4ri ( ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧𝐶 𝜑 ) ↔ ∀ 𝑧 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) )
11 10 2albii ( ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧𝐶 𝜑 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) )
12 1 11 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 ) )