Metamath Proof Explorer


Theorem rankc2

Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 𝐴 ∈ V
Assertion rankc2 ( ∃ 𝑥𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) = suc ( rank ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rankr1b.1 𝐴 ∈ V
2 pwuni 𝐴 ⊆ 𝒫 𝐴
3 1 uniex 𝐴 ∈ V
4 3 pwex 𝒫 𝐴 ∈ V
5 4 rankss ( 𝐴 ⊆ 𝒫 𝐴 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 𝐴 ) )
6 2 5 ax-mp ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 𝐴 )
7 3 rankpw ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 )
8 6 7 sseqtri ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 )
9 8 a1i ( ∃ 𝑥𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 ) )
10 1 rankel ( 𝑥𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) )
11 eleq1 ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) )
12 10 11 syl5ibcom ( 𝑥𝐴 → ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) )
13 12 rexlimiv ( ∃ 𝑥𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐴 ) )
14 rankon ( rank ‘ 𝐴 ) ∈ On
15 rankon ( rank ‘ 𝐴 ) ∈ On
16 14 15 onsucssi ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) )
17 13 16 sylib ( ∃ 𝑥𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) )
18 9 17 eqssd ( ∃ 𝑥𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) = suc ( rank ‘ 𝐴 ) )