Metamath Proof Explorer


Theorem rankelb

Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankelb ( 𝐵 ( 𝑅1 “ On ) → ( 𝐴𝐵 → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 r1elssi ( 𝐵 ( 𝑅1 “ On ) → 𝐵 ( 𝑅1 “ On ) )
2 1 sseld ( 𝐵 ( 𝑅1 “ On ) → ( 𝐴𝐵𝐴 ( 𝑅1 “ On ) ) )
3 rankidn ( 𝐴 ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
4 2 3 syl6 ( 𝐵 ( 𝑅1 “ On ) → ( 𝐴𝐵 → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) )
5 4 imp ( ( 𝐵 ( 𝑅1 “ On ) ∧ 𝐴𝐵 ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
6 rankon ( rank ‘ 𝐵 ) ∈ On
7 rankon ( rank ‘ 𝐴 ) ∈ On
8 ontri1 ( ( ( rank ‘ 𝐵 ) ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) )
9 6 7 8 mp2an ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) )
10 rankdmr1 ( rank ‘ 𝐵 ) ∈ dom 𝑅1
11 rankdmr1 ( rank ‘ 𝐴 ) ∈ dom 𝑅1
12 r1ord3g ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) )
13 10 11 12 mp2an ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
14 r1rankidb ( 𝐵 ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) )
15 14 sselda ( ( 𝐵 ( 𝑅1 “ On ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) )
16 ssel ( ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) )
17 13 15 16 syl2imc ( ( 𝐵 ( 𝑅1 “ On ) ∧ 𝐴𝐵 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) )
18 9 17 syl5bir ( ( 𝐵 ( 𝑅1 “ On ) ∧ 𝐴𝐵 ) → ( ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) )
19 5 18 mt3d ( ( 𝐵 ( 𝑅1 “ On ) ∧ 𝐴𝐵 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) )
20 19 ex ( 𝐵 ( 𝑅1 “ On ) → ( 𝐴𝐵 → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) )