Metamath Proof Explorer


Theorem recexsrlem

Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion recexsrlem ( 0R <R 𝐴 → ∃ 𝑥R ( 𝐴 ·R 𝑥 ) = 1R )

Proof

Step Hyp Ref Expression
1 ltrelsr <R ⊆ ( R × R )
2 1 brel ( 0R <R 𝐴 → ( 0RR𝐴R ) )
3 2 simprd ( 0R <R 𝐴𝐴R )
4 df-nr R = ( ( P × P ) / ~R )
5 breq2 ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R = 𝐴 → ( 0R <R [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ↔ 0R <R 𝐴 ) )
6 oveq1 ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R = 𝐴 → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = ( 𝐴 ·R 𝑥 ) )
7 6 eqeq1d ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R = 𝐴 → ( ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ↔ ( 𝐴 ·R 𝑥 ) = 1R ) )
8 7 rexbidv ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R = 𝐴 → ( ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ↔ ∃ 𝑥R ( 𝐴 ·R 𝑥 ) = 1R ) )
9 5 8 imbi12d ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R = 𝐴 → ( ( 0R <R [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) ↔ ( 0R <R 𝐴 → ∃ 𝑥R ( 𝐴 ·R 𝑥 ) = 1R ) ) )
10 gt0srpr ( 0R <R [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R𝑧 <P 𝑦 )
11 ltexpri ( 𝑧 <P 𝑦 → ∃ 𝑤P ( 𝑧 +P 𝑤 ) = 𝑦 )
12 10 11 sylbi ( 0R <R [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R → ∃ 𝑤P ( 𝑧 +P 𝑤 ) = 𝑦 )
13 recexpr ( 𝑤P → ∃ 𝑣P ( 𝑤 ·P 𝑣 ) = 1P )
14 1pr 1PP
15 addclpr ( ( 𝑣P ∧ 1PP ) → ( 𝑣 +P 1P ) ∈ P )
16 14 15 mpan2 ( 𝑣P → ( 𝑣 +P 1P ) ∈ P )
17 enrex ~R ∈ V
18 17 4 ecopqsi ( ( ( 𝑣 +P 1P ) ∈ P ∧ 1PP ) → [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~RR )
19 16 14 18 sylancl ( 𝑣P → [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~RR )
20 19 ad2antlr ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~RR )
21 16 14 jctir ( 𝑣P → ( ( 𝑣 +P 1P ) ∈ P ∧ 1PP ) )
22 21 anim2i ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( ( 𝑦P𝑧P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1PP ) ) )
23 22 adantr ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( ( 𝑦P𝑧P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1PP ) ) )
24 mulsrpr ( ( ( 𝑦P𝑧P ) ∧ ( ( 𝑣 +P 1P ) ∈ P ∧ 1PP ) ) → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R )
25 23 24 syl ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R )
26 oveq1 ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( 𝑦 ·P 𝑣 ) )
27 26 eqcomd ( ( 𝑧 +P 𝑤 ) = 𝑦 → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) )
28 vex 𝑧 ∈ V
29 vex 𝑤 ∈ V
30 vex 𝑣 ∈ V
31 mulcompr ( 𝑢 ·P 𝑓 ) = ( 𝑓 ·P 𝑢 )
32 distrpr ( 𝑢 ·P ( 𝑓 +P 𝑥 ) ) = ( ( 𝑢 ·P 𝑓 ) +P ( 𝑢 ·P 𝑥 ) )
33 28 29 30 31 32 caovdir ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) )
34 oveq2 ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑣 ) ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) )
35 33 34 syl5eq ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) )
36 27 35 sylan9eqr ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( 𝑦 ·P 𝑣 ) = ( ( 𝑧 ·P 𝑣 ) +P 1P ) )
37 36 oveq1d ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) )
38 ovex ( 𝑧 ·P 𝑣 ) ∈ V
39 14 elexi 1P ∈ V
40 ovex ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ∈ V
41 addcompr ( 𝑢 +P 𝑓 ) = ( 𝑓 +P 𝑢 )
42 addasspr ( ( 𝑢 +P 𝑓 ) +P 𝑥 ) = ( 𝑢 +P ( 𝑓 +P 𝑥 ) )
43 38 39 40 41 42 caov32 ( ( ( 𝑧 ·P 𝑣 ) +P 1P ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P )
44 37 43 syl6eq ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) )
45 44 oveq1d ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) )
46 addasspr ( ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) )
47 45 46 syl6eq ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) ) )
48 distrpr ( 𝑦 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) )
49 48 oveq1i ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) )
50 addasspr ( ( ( 𝑦 ·P 𝑣 ) +P ( 𝑦 ·P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) )
51 49 50 eqtri ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) = ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) )
52 51 oveq1i ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P 1P )
53 distrpr ( 𝑧 ·P ( 𝑣 +P 1P ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) )
54 53 oveq2i ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) )
55 ovex ( 𝑦 ·P 1P ) ∈ V
56 ovex ( 𝑧 ·P 1P ) ∈ V
57 55 38 56 41 42 caov12 ( ( 𝑦 ·P 1P ) +P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑧 ·P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) )
58 54 57 eqtri ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) = ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) )
59 58 oveq1i ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) = ( ( ( 𝑧 ·P 𝑣 ) +P ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P 1P ) ) ) +P ( 1P +P 1P ) )
60 47 52 59 3eqtr4g ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) )
61 mulclpr ( ( 𝑦P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P )
62 16 61 sylan2 ( ( 𝑦P𝑣P ) → ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P )
63 mulclpr ( ( 𝑧P ∧ 1PP ) → ( 𝑧 ·P 1P ) ∈ P )
64 14 63 mpan2 ( 𝑧P → ( 𝑧 ·P 1P ) ∈ P )
65 addclpr ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) ∈ P ∧ ( 𝑧 ·P 1P ) ∈ P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P )
66 62 64 65 syl2an ( ( ( 𝑦P𝑣P ) ∧ 𝑧P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P )
67 66 an32s ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P )
68 mulclpr ( ( 𝑦P ∧ 1PP ) → ( 𝑦 ·P 1P ) ∈ P )
69 14 68 mpan2 ( 𝑦P → ( 𝑦 ·P 1P ) ∈ P )
70 mulclpr ( ( 𝑧P ∧ ( 𝑣 +P 1P ) ∈ P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P )
71 16 70 sylan2 ( ( 𝑧P𝑣P ) → ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P )
72 addclpr ( ( ( 𝑦 ·P 1P ) ∈ P ∧ ( 𝑧 ·P ( 𝑣 +P 1P ) ) ∈ P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P )
73 69 71 72 syl2an ( ( 𝑦P ∧ ( 𝑧P𝑣P ) ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P )
74 73 anassrs ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P )
75 67 74 jca ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) )
76 addclpr ( ( 1PP ∧ 1PP ) → ( 1P +P 1P ) ∈ P )
77 14 14 76 mp2an ( 1P +P 1P ) ∈ P
78 77 14 pm3.2i ( ( 1P +P 1P ) ∈ P ∧ 1PP )
79 enreceq ( ( ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) ∈ P ∧ ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ∈ P ) ∧ ( ( 1P +P 1P ) ∈ P ∧ 1PP ) ) → ( [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) )
80 75 78 79 sylancl ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R ↔ ( ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) +P 1P ) = ( ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) +P ( 1P +P 1P ) ) ) )
81 60 80 syl5ibr ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) → ( ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) → [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R ) )
82 81 imp ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → [ ⟨ ( ( 𝑦 ·P ( 𝑣 +P 1P ) ) +P ( 𝑧 ·P 1P ) ) , ( ( 𝑦 ·P 1P ) +P ( 𝑧 ·P ( 𝑣 +P 1P ) ) ) ⟩ ] ~R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R )
83 25 82 eqtrd ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R )
84 df-1r 1R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R
85 83 84 syl6eqr ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = 1R )
86 oveq2 ( 𝑥 = [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R → ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) )
87 86 eqeq1d ( 𝑥 = [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R → ( ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ↔ ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = 1R ) )
88 87 rspcev ( ( [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~RR ∧ ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R [ ⟨ ( 𝑣 +P 1P ) , 1P ⟩ ] ~R ) = 1R ) → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R )
89 20 85 88 syl2anc ( ( ( ( 𝑦P𝑧P ) ∧ 𝑣P ) ∧ ( ( 𝑤 ·P 𝑣 ) = 1P ∧ ( 𝑧 +P 𝑤 ) = 𝑦 ) ) → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R )
90 89 exp43 ( ( 𝑦P𝑧P ) → ( 𝑣P → ( ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) ) ) )
91 90 rexlimdv ( ( 𝑦P𝑧P ) → ( ∃ 𝑣P ( 𝑤 ·P 𝑣 ) = 1P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) ) )
92 13 91 syl5 ( ( 𝑦P𝑧P ) → ( 𝑤P → ( ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) ) )
93 92 rexlimdv ( ( 𝑦P𝑧P ) → ( ∃ 𝑤P ( 𝑧 +P 𝑤 ) = 𝑦 → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) )
94 12 93 syl5 ( ( 𝑦P𝑧P ) → ( 0R <R [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R → ∃ 𝑥R ( [ ⟨ 𝑦 , 𝑧 ⟩ ] ~R ·R 𝑥 ) = 1R ) )
95 4 9 94 ecoptocl ( 𝐴R → ( 0R <R 𝐴 → ∃ 𝑥R ( 𝐴 ·R 𝑥 ) = 1R ) )
96 3 95 mpcom ( 0R <R 𝐴 → ∃ 𝑥R ( 𝐴 ·R 𝑥 ) = 1R )