Metamath Proof Explorer


Theorem riinrab

Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion riinrab ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 }

Proof

Step Hyp Ref Expression
1 riin0 ( 𝑋 = ∅ → ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = 𝐴 )
2 rzal ( 𝑋 = ∅ → ∀ 𝑥𝑋 𝜑 )
3 2 ralrimivw ( 𝑋 = ∅ → ∀ 𝑦𝐴𝑥𝑋 𝜑 )
4 rabid2 ( 𝐴 = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 } ↔ ∀ 𝑦𝐴𝑥𝑋 𝜑 )
5 3 4 sylibr ( 𝑋 = ∅ → 𝐴 = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 } )
6 1 5 eqtrd ( 𝑋 = ∅ → ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 } )
7 ssrab2 { 𝑦𝐴𝜑 } ⊆ 𝐴
8 7 rgenw 𝑥𝑋 { 𝑦𝐴𝜑 } ⊆ 𝐴
9 riinn0 ( ( ∀ 𝑥𝑋 { 𝑦𝐴𝜑 } ⊆ 𝐴𝑋 ≠ ∅ ) → ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = 𝑥𝑋 { 𝑦𝐴𝜑 } )
10 8 9 mpan ( 𝑋 ≠ ∅ → ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = 𝑥𝑋 { 𝑦𝐴𝜑 } )
11 iinrab ( 𝑋 ≠ ∅ → 𝑥𝑋 { 𝑦𝐴𝜑 } = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 } )
12 10 11 eqtrd ( 𝑋 ≠ ∅ → ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 } )
13 6 12 pm2.61ine ( 𝐴 𝑥𝑋 { 𝑦𝐴𝜑 } ) = { 𝑦𝐴 ∣ ∀ 𝑥𝑋 𝜑 }