Metamath Proof Explorer


Theorem sadfval

Description: Define the addition of two bit sequences, using df-had and df-cad bit operations. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Hypotheses sadval.a ( 𝜑𝐴 ⊆ ℕ0 )
sadval.b ( 𝜑𝐵 ⊆ ℕ0 )
sadval.c 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) )
Assertion sadfval ( 𝜑 → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) } )

Proof

Step Hyp Ref Expression
1 sadval.a ( 𝜑𝐴 ⊆ ℕ0 )
2 sadval.b ( 𝜑𝐵 ⊆ ℕ0 )
3 sadval.c 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) )
4 nn0ex 0 ∈ V
5 4 elpw2 ( 𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0 )
6 1 5 sylibr ( 𝜑𝐴 ∈ 𝒫 ℕ0 )
7 4 elpw2 ( 𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0 )
8 2 7 sylibr ( 𝜑𝐵 ∈ 𝒫 ℕ0 )
9 simpl ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑥 = 𝐴 )
10 9 eleq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑘𝑥𝑘𝐴 ) )
11 simpr ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑦 = 𝐵 )
12 11 eleq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑘𝑦𝑘𝐵 ) )
13 simp1l ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → 𝑥 = 𝐴 )
14 13 eleq2d ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → ( 𝑚𝑥𝑚𝐴 ) )
15 simp1r ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → 𝑦 = 𝐵 )
16 15 eleq2d ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → ( 𝑚𝑦𝑚𝐵 ) )
17 biidd ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → ( ∅ ∈ 𝑐 ↔ ∅ ∈ 𝑐 ) )
18 14 16 17 cadbi123d ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) ↔ cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) ) )
19 18 ifbid ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o𝑚 ∈ ℕ0 ) → if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) = if ( cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) )
20 19 mpoeq3dva ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) = ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) )
21 20 seqeq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝐴 , 𝑚𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) )
22 21 3 syl6eqr ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = 𝐶 )
23 22 fveq1d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) = ( 𝐶𝑘 ) )
24 23 eleq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ↔ ∅ ∈ ( 𝐶𝑘 ) ) )
25 10 12 24 hadbi123d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( hadd ( 𝑘𝑥 , 𝑘𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) ↔ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) ) )
26 25 rabbidv ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝑥 , 𝑘𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) } )
27 df-sad sadd = ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ 𝒫 ℕ0 ↦ { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝑥 , 𝑘𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚𝑥 , 𝑚𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } )
28 4 rabex { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) } ∈ V
29 26 27 28 ovmpoa ( ( 𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0 ) → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) } )
30 6 8 29 syl2anc ( 𝜑 → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘𝐴 , 𝑘𝐵 , ∅ ∈ ( 𝐶𝑘 ) ) } )