Metamath Proof Explorer


Theorem seqcoll2

Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses seqcoll2.1 ( ( 𝜑𝑘𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 )
seqcoll2.1b ( ( 𝜑𝑘𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 )
seqcoll2.c ( ( 𝜑 ∧ ( 𝑘𝑆𝑛𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 )
seqcoll2.a ( 𝜑𝑍𝑆 )
seqcoll2.2 ( 𝜑𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
seqcoll2.3 ( 𝜑𝐴 ≠ ∅ )
seqcoll2.5 ( 𝜑𝐴 ⊆ ( 𝑀 ... 𝑁 ) )
seqcoll2.6 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
seqcoll2.7 ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) → ( 𝐹𝑘 ) = 𝑍 )
seqcoll2.8 ( ( 𝜑𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) )
Assertion seqcoll2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 seqcoll2.1 ( ( 𝜑𝑘𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 )
2 seqcoll2.1b ( ( 𝜑𝑘𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 )
3 seqcoll2.c ( ( 𝜑 ∧ ( 𝑘𝑆𝑛𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 )
4 seqcoll2.a ( 𝜑𝑍𝑆 )
5 seqcoll2.2 ( 𝜑𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
6 seqcoll2.3 ( 𝜑𝐴 ≠ ∅ )
7 seqcoll2.5 ( 𝜑𝐴 ⊆ ( 𝑀 ... 𝑁 ) )
8 seqcoll2.6 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
9 seqcoll2.7 ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) → ( 𝐹𝑘 ) = 𝑍 )
10 seqcoll2.8 ( ( 𝜑𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻𝑛 ) = ( 𝐹 ‘ ( 𝐺𝑛 ) ) )
11 fzssuz ( 𝑀 ... 𝑁 ) ⊆ ( ℤ𝑀 )
12 isof1o ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
13 5 12 syl ( 𝜑𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
14 f1of ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
15 13 14 syl ( 𝜑𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
16 fzfi ( 𝑀 ... 𝑁 ) ∈ Fin
17 ssfi ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ Fin )
18 16 7 17 sylancr ( 𝜑𝐴 ∈ Fin )
19 hasheq0 ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
20 18 19 syl ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
21 20 necon3bbid ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 ≠ ∅ ) )
22 6 21 mpbird ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 )
23 hashcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
24 18 23 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
25 elnn0 ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) )
26 24 25 sylib ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) )
27 26 ord ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) = 0 ) )
28 22 27 mt3d ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ )
29 nnuz ℕ = ( ℤ ‘ 1 )
30 28 29 eleqtrdi ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) )
31 eluzfz2 ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
32 30 31 syl ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
33 15 32 ffvelrnd ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 )
34 7 33 sseldd ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) )
35 11 34 sseldi ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑀 ) )
36 elfzuz3 ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
37 34 36 syl ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )
38 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) )
39 37 38 syl ( 𝜑 → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) )
40 39 sselda ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) )
41 40 8 syldan ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹𝑘 ) ∈ 𝑆 )
42 35 41 3 seqcl ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∈ 𝑆 )
43 peano2uz ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑀 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ𝑀 ) )
44 35 43 syl ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ𝑀 ) )
45 fzss1 ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ𝑀 ) → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
46 44 45 syl ( 𝜑 → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
47 46 sselda ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) )
48 eluzelre ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ )
49 35 48 syl ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ )
50 49 adantr ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ )
51 peano2re ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ )
52 50 51 syl ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ )
53 elfzelz ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℤ )
54 53 zred ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℝ )
55 54 adantl ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℝ )
56 50 ltp1d ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) )
57 elfzle1 ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 )
58 57 adantl ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 )
59 50 52 55 56 58 ltletrd ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 )
60 13 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 )
61 f1ocnv ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
62 60 61 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
63 f1of ( 𝐺 : 𝐴1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
64 62 63 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
65 simprr ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → 𝑘𝐴 )
66 64 65 ffvelrnd ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
67 elfzelz ( ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℤ )
68 66 67 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℤ )
69 68 zred ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ∈ ℝ )
70 24 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
71 70 nn0red ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ )
72 elfzle2 ( ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝐺𝑘 ) ≤ ( ♯ ‘ 𝐴 ) )
73 66 72 syl ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( 𝐺𝑘 ) ≤ ( ♯ ‘ 𝐴 ) )
74 69 71 73 lensymd ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ¬ ( ♯ ‘ 𝐴 ) < ( 𝐺𝑘 ) )
75 5 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) )
76 32 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
77 isorel ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝐺𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( ♯ ‘ 𝐴 ) < ( 𝐺𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
78 75 76 66 77 syl12anc ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( 𝐺𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ) )
79 f1ocnvfv2 ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑘𝐴 ) → ( 𝐺 ‘ ( 𝐺𝑘 ) ) = 𝑘 )
80 60 65 79 syl2anc ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( 𝐺 ‘ ( 𝐺𝑘 ) ) = 𝑘 )
81 80 breq2d ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( 𝐺𝑘 ) ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) )
82 78 81 bitrd ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( 𝐺𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) )
83 74 82 mtbid ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘𝐴 ) ) → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 )
84 83 expr ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝑘𝐴 → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) )
85 59 84 mt2d ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ¬ 𝑘𝐴 )
86 47 85 eldifd ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) )
87 86 9 syldan ( ( 𝜑𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐹𝑘 ) = 𝑍 )
88 2 35 37 42 87 seqid2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )
89 7 11 sstrdi ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
90 39 ssdifd ( 𝜑 → ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) )
91 90 sselda ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) )
92 91 9 syldan ( ( 𝜑𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹𝑘 ) = 𝑍 )
93 1 2 3 4 5 32 89 41 92 10 seqcoll ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) )
94 88 93 eqtr3d ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) )