Metamath Proof Explorer


Theorem shsidmi

Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis shsidm.1 𝐴S
Assertion shsidmi ( 𝐴 + 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 shsidm.1 𝐴S
2 1 1 shseli ( 𝑥 ∈ ( 𝐴 + 𝐴 ) ↔ ∃ 𝑦𝐴𝑧𝐴 𝑥 = ( 𝑦 + 𝑧 ) )
3 shaddcl ( ( 𝐴S𝑦𝐴𝑧𝐴 ) → ( 𝑦 + 𝑧 ) ∈ 𝐴 )
4 1 3 mp3an1 ( ( 𝑦𝐴𝑧𝐴 ) → ( 𝑦 + 𝑧 ) ∈ 𝐴 )
5 eleq1 ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝑥𝐴 ↔ ( 𝑦 + 𝑧 ) ∈ 𝐴 ) )
6 4 5 syl5ibrcom ( ( 𝑦𝐴𝑧𝐴 ) → ( 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) )
7 6 rexlimivv ( ∃ 𝑦𝐴𝑧𝐴 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 )
8 2 7 sylbi ( 𝑥 ∈ ( 𝐴 + 𝐴 ) → 𝑥𝐴 )
9 8 ssriv ( 𝐴 + 𝐴 ) ⊆ 𝐴
10 1 1 shsub1i 𝐴 ⊆ ( 𝐴 + 𝐴 )
11 9 10 eqssi ( 𝐴 + 𝐴 ) = 𝐴