Metamath Proof Explorer


Theorem sqdivi

Description: Distribution of square over division. (Contributed by NM, 20-Aug-2001)

Ref Expression
Hypotheses sqval.1 𝐴 ∈ ℂ
sqmul.2 𝐵 ∈ ℂ
sqdiv.3 𝐵 ≠ 0
Assertion sqdivi ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 sqval.1 𝐴 ∈ ℂ
2 sqmul.2 𝐵 ∈ ℂ
3 sqdiv.3 𝐵 ≠ 0
4 1 2 1 2 3 3 divmuldivi ( ( 𝐴 / 𝐵 ) · ( 𝐴 / 𝐵 ) ) = ( ( 𝐴 · 𝐴 ) / ( 𝐵 · 𝐵 ) )
5 1 2 3 divcli ( 𝐴 / 𝐵 ) ∈ ℂ
6 5 sqvali ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 / 𝐵 ) · ( 𝐴 / 𝐵 ) )
7 1 sqvali ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )
8 2 sqvali ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 )
9 7 8 oveq12i ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 · 𝐴 ) / ( 𝐵 · 𝐵 ) )
10 4 6 9 3eqtr4i ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) )