Metamath Proof Explorer


Theorem ssfii

Description: Any element of a set A is the intersection of a finite subset of A . (Contributed by FL, 27-Apr-2008) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion ssfii ( 𝐴𝑉𝐴 ⊆ ( fi ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 intsn { 𝑥 } = 𝑥
3 simpl ( ( 𝐴𝑉𝑥𝐴 ) → 𝐴𝑉 )
4 simpr ( ( 𝐴𝑉𝑥𝐴 ) → 𝑥𝐴 )
5 4 snssd ( ( 𝐴𝑉𝑥𝐴 ) → { 𝑥 } ⊆ 𝐴 )
6 1 snnz { 𝑥 } ≠ ∅
7 6 a1i ( ( 𝐴𝑉𝑥𝐴 ) → { 𝑥 } ≠ ∅ )
8 snfi { 𝑥 } ∈ Fin
9 8 a1i ( ( 𝐴𝑉𝑥𝐴 ) → { 𝑥 } ∈ Fin )
10 elfir ( ( 𝐴𝑉 ∧ ( { 𝑥 } ⊆ 𝐴 ∧ { 𝑥 } ≠ ∅ ∧ { 𝑥 } ∈ Fin ) ) → { 𝑥 } ∈ ( fi ‘ 𝐴 ) )
11 3 5 7 9 10 syl13anc ( ( 𝐴𝑉𝑥𝐴 ) → { 𝑥 } ∈ ( fi ‘ 𝐴 ) )
12 2 11 eqeltrrid ( ( 𝐴𝑉𝑥𝐴 ) → 𝑥 ∈ ( fi ‘ 𝐴 ) )
13 12 ex ( 𝐴𝑉 → ( 𝑥𝐴𝑥 ∈ ( fi ‘ 𝐴 ) ) )
14 13 ssrdv ( 𝐴𝑉𝐴 ⊆ ( fi ‘ 𝐴 ) )