Metamath Proof Explorer


Theorem ssin

Description: Subclass of intersection. Theorem 2.8(vii) of Monk1 p. 26. (Contributed by NM, 15-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssin ( ( 𝐴𝐵𝐴𝐶 ) ↔ 𝐴 ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
2 1 imbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
3 2 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
4 jcab ( ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) )
5 4 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) )
6 19.26 ( ∀ 𝑥 ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ) )
7 3 5 6 3bitrri ( ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
8 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
9 dfss2 ( 𝐴𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) )
10 8 9 anbi12i ( ( 𝐴𝐵𝐴𝐶 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ) )
11 dfss2 ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
12 7 10 11 3bitr4i ( ( 𝐴𝐵𝐴𝐶 ) ↔ 𝐴 ⊆ ( 𝐵𝐶 ) )