Metamath Proof Explorer


Theorem suplem1pr

Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion suplem1pr ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → 𝐴P )

Proof

Step Hyp Ref Expression
1 ltrelpr <P ⊆ ( P × P )
2 1 brel ( 𝑦 <P 𝑥 → ( 𝑦P𝑥P ) )
3 2 simpld ( 𝑦 <P 𝑥𝑦P )
4 3 ralimi ( ∀ 𝑦𝐴 𝑦 <P 𝑥 → ∀ 𝑦𝐴 𝑦P )
5 dfss3 ( 𝐴P ↔ ∀ 𝑦𝐴 𝑦P )
6 4 5 sylibr ( ∀ 𝑦𝐴 𝑦 <P 𝑥𝐴P )
7 6 rexlimivw ( ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥𝐴P )
8 7 adantl ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → 𝐴P )
9 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
10 ssel ( 𝐴P → ( 𝑧𝐴𝑧P ) )
11 prn0 ( 𝑧P𝑧 ≠ ∅ )
12 0pss ( ∅ ⊊ 𝑧𝑧 ≠ ∅ )
13 11 12 sylibr ( 𝑧P → ∅ ⊊ 𝑧 )
14 elssuni ( 𝑧𝐴𝑧 𝐴 )
15 psssstr ( ( ∅ ⊊ 𝑧𝑧 𝐴 ) → ∅ ⊊ 𝐴 )
16 13 14 15 syl2an ( ( 𝑧P𝑧𝐴 ) → ∅ ⊊ 𝐴 )
17 16 expcom ( 𝑧𝐴 → ( 𝑧P → ∅ ⊊ 𝐴 ) )
18 10 17 sylcom ( 𝐴P → ( 𝑧𝐴 → ∅ ⊊ 𝐴 ) )
19 18 exlimdv ( 𝐴P → ( ∃ 𝑧 𝑧𝐴 → ∅ ⊊ 𝐴 ) )
20 9 19 syl5bi ( 𝐴P → ( 𝐴 ≠ ∅ → ∅ ⊊ 𝐴 ) )
21 prpssnq ( 𝑥P𝑥Q )
22 21 adantl ( ( 𝐴P𝑥P ) → 𝑥Q )
23 ltprord ( ( 𝑦P𝑥P ) → ( 𝑦 <P 𝑥𝑦𝑥 ) )
24 pssss ( 𝑦𝑥𝑦𝑥 )
25 23 24 syl6bi ( ( 𝑦P𝑥P ) → ( 𝑦 <P 𝑥𝑦𝑥 ) )
26 2 25 mpcom ( 𝑦 <P 𝑥𝑦𝑥 )
27 26 ralimi ( ∀ 𝑦𝐴 𝑦 <P 𝑥 → ∀ 𝑦𝐴 𝑦𝑥 )
28 unissb ( 𝐴𝑥 ↔ ∀ 𝑦𝐴 𝑦𝑥 )
29 27 28 sylibr ( ∀ 𝑦𝐴 𝑦 <P 𝑥 𝐴𝑥 )
30 sspsstr ( ( 𝐴𝑥𝑥Q ) → 𝐴Q )
31 30 expcom ( 𝑥Q → ( 𝐴𝑥 𝐴Q ) )
32 22 29 31 syl2im ( ( 𝐴P𝑥P ) → ( ∀ 𝑦𝐴 𝑦 <P 𝑥 𝐴Q ) )
33 32 rexlimdva ( 𝐴P → ( ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 𝐴Q ) )
34 20 33 anim12d ( 𝐴P → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ 𝐴 𝐴Q ) ) )
35 8 34 mpcom ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ 𝐴 𝐴Q ) )
36 prcdnq ( ( 𝑧P𝑥𝑧 ) → ( 𝑦 <Q 𝑥𝑦𝑧 ) )
37 36 ex ( 𝑧P → ( 𝑥𝑧 → ( 𝑦 <Q 𝑥𝑦𝑧 ) ) )
38 37 com3r ( 𝑦 <Q 𝑥 → ( 𝑧P → ( 𝑥𝑧𝑦𝑧 ) ) )
39 10 38 sylan9 ( ( 𝐴P𝑦 <Q 𝑥 ) → ( 𝑧𝐴 → ( 𝑥𝑧𝑦𝑧 ) ) )
40 39 reximdvai ( ( 𝐴P𝑦 <Q 𝑥 ) → ( ∃ 𝑧𝐴 𝑥𝑧 → ∃ 𝑧𝐴 𝑦𝑧 ) )
41 eluni2 ( 𝑥 𝐴 ↔ ∃ 𝑧𝐴 𝑥𝑧 )
42 eluni2 ( 𝑦 𝐴 ↔ ∃ 𝑧𝐴 𝑦𝑧 )
43 40 41 42 3imtr4g ( ( 𝐴P𝑦 <Q 𝑥 ) → ( 𝑥 𝐴𝑦 𝐴 ) )
44 43 ex ( 𝐴P → ( 𝑦 <Q 𝑥 → ( 𝑥 𝐴𝑦 𝐴 ) ) )
45 44 com23 ( 𝐴P → ( 𝑥 𝐴 → ( 𝑦 <Q 𝑥𝑦 𝐴 ) ) )
46 45 alrimdv ( 𝐴P → ( 𝑥 𝐴 → ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦 𝐴 ) ) )
47 eluni ( 𝑥 𝐴 ↔ ∃ 𝑧 ( 𝑥𝑧𝑧𝐴 ) )
48 prnmax ( ( 𝑧P𝑥𝑧 ) → ∃ 𝑦𝑧 𝑥 <Q 𝑦 )
49 48 ex ( 𝑧P → ( 𝑥𝑧 → ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) )
50 10 49 syl6 ( 𝐴P → ( 𝑧𝐴 → ( 𝑥𝑧 → ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) )
51 50 com23 ( 𝐴P → ( 𝑥𝑧 → ( 𝑧𝐴 → ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) )
52 51 imp ( ( 𝐴P𝑥𝑧 ) → ( 𝑧𝐴 → ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) )
53 ssrexv ( 𝑧 𝐴 → ( ∃ 𝑦𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
54 14 53 syl ( 𝑧𝐴 → ( ∃ 𝑦𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
55 52 54 sylcom ( ( 𝐴P𝑥𝑧 ) → ( 𝑧𝐴 → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
56 55 expimpd ( 𝐴P → ( ( 𝑥𝑧𝑧𝐴 ) → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
57 56 exlimdv ( 𝐴P → ( ∃ 𝑧 ( 𝑥𝑧𝑧𝐴 ) → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
58 47 57 syl5bi ( 𝐴P → ( 𝑥 𝐴 → ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
59 46 58 jcad ( 𝐴P → ( 𝑥 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦 𝐴 ) ∧ ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) ) )
60 59 ralrimiv ( 𝐴P → ∀ 𝑥 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦 𝐴 ) ∧ ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
61 8 60 syl ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ∀ 𝑥 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦 𝐴 ) ∧ ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) )
62 elnp ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴 𝐴Q ) ∧ ∀ 𝑥 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦 𝐴 ) ∧ ∃ 𝑦 𝐴 𝑥 <Q 𝑦 ) ) )
63 35 61 62 sylanbrc ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → 𝐴P )