Metamath Proof Explorer


Theorem supxrun

Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrun ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( ( 𝐴𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 unss ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ↔ ( 𝐴𝐵 ) ⊆ ℝ* )
2 1 biimpi ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐴𝐵 ) ⊆ ℝ* )
3 2 3adant3 ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝐴𝐵 ) ⊆ ℝ* )
4 supxrcl ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
5 4 3ad2ant2 ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
6 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
7 xrltso < Or ℝ*
8 7 a1i ( 𝐴 ⊆ ℝ* → < Or ℝ* )
9 xrsupss ( 𝐴 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤𝐴 𝑧 < 𝑤 ) ) )
10 8 9 supub ( 𝐴 ⊆ ℝ* → ( 𝑥𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) )
11 10 3ad2ant1 ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) )
12 supxrcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
13 12 ad2antrr ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
14 4 ad2antlr ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
15 ssel2 ( ( 𝐴 ⊆ ℝ*𝑥𝐴 ) → 𝑥 ∈ ℝ* )
16 15 adantlr ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ* )
17 xrlelttr ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ*𝑥 ∈ ℝ* ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) )
18 13 14 16 17 syl3anc ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) )
19 18 expdimp ( ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( sup ( 𝐵 , ℝ* , < ) < 𝑥 → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) )
20 19 con3d ( ( ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
21 20 exp41 ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( 𝑥𝐴 → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) )
22 21 com34 ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( 𝑥𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) )
23 22 3imp ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) )
24 11 23 mpdd ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥𝐴 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
25 7 a1i ( 𝐵 ⊆ ℝ* → < Or ℝ* )
26 xrsupss ( 𝐵 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤𝐵 𝑧 < 𝑤 ) ) )
27 25 26 supub ( 𝐵 ⊆ ℝ* → ( 𝑥𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
28 27 3ad2ant2 ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
29 24 28 jaod ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ( 𝑥𝐴𝑥𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
30 6 29 syl5bi ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) )
31 30 ralrimiv ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ( 𝐴𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 )
32 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
33 xrsupss ( 𝐵 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑥 → ∃ 𝑦𝐵 𝑧 < 𝑦 ) ) )
34 25 33 suplub ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ*𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦𝐵 𝑥 < 𝑦 ) )
35 32 34 sylani ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦𝐵 𝑥 < 𝑦 ) )
36 elun2 ( 𝑦𝐵𝑦 ∈ ( 𝐴𝐵 ) )
37 36 anim1i ( ( 𝑦𝐵𝑥 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴𝐵 ) ∧ 𝑥 < 𝑦 ) )
38 37 reximi2 ( ∃ 𝑦𝐵 𝑥 < 𝑦 → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 )
39 35 38 syl6 ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 ) )
40 39 expd ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ ℝ → ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 ) ) )
41 40 ralrimiv ( 𝐵 ⊆ ℝ* → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 ) )
42 41 3ad2ant2 ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 ) )
43 supxr ( ( ( ( 𝐴𝐵 ) ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥 < 𝑦 ) ) ) → sup ( ( 𝐴𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) )
44 3 5 31 42 43 syl22anc ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( ( 𝐴𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) )