Metamath Proof Explorer
Table of Contents - 2.1. ZF Set Theory - start with the Axiom of Extensionality
- Introduce the Axiom of Extensionality
- ax-ext
- axexte
- axextg
- axextb
- axextmo
- nulmo
- Classes
- Class abstractions
- Class equality
- Class membership
- Elementary properties of class abstractions
- Class form not-free predicate
- wnfc
- nfcjust
- df-nfc
- nfci
- nfcii
- nfcr
- nfcrALT
- nfcri
- nfcd
- nfcrd
- nfcriOLD
- nfcriOLDOLD
- nfcrii
- nfcriiOLD
- nfcriOLDOLDOLD
- nfceqdf
- nfceqdfOLD
- nfceqi
- nfcxfr
- nfcxfrd
- nfcv
- nfcvd
- nfab1
- nfnfc1
- clelsb1fw
- clelsb1f
- nfab
- nfabg
- nfaba1
- nfaba1g
- nfeqd
- nfeld
- nfnfc
- nfeq
- nfel
- nfeq1
- nfel1
- nfeq2
- nfel2
- drnfc1
- drnfc1OLD
- drnfc2
- drnfc2OLD
- nfabdw
- nfabdwOLD
- nfabd
- nfabd2
- dvelimdc
- dvelimc
- nfcvf
- nfcvf2
- cleqf
- abid2f
- abeq2f
- sbabel
- sbabelOLD
- Negated equality and membership
- Negated equality
- Negated membership
- Restricted quantification
- wral
- wrex
- wreu
- wrmo
- crab
- df-ral
- df-rex
- df-reu
- df-rmo
- df-rab
- rgen
- ralel
- rgenw
- rgen2w
- mprg
- mprgbir
- alral
- raln
- ral2imi
- ralim
- ralimi2
- ralimia
- ralimiaa
- ralimi
- 2ralimi
- ralbii2
- ralbiia
- ralbii
- 2ralbii
- ralbi
- ralanid
- r19.26
- r19.26-2
- r19.26-3
- r19.26m
- ralbiim
- 2ralbiim
- r19.21v
- ralimdv2
- ralimdva
- ralimdv
- ralimdvva
- hbralrimi
- ralrimiv
- ralrimiva
- ralrimivw
- r19.27v
- r19.28v
- ralrimdv
- ralrimdva
- ralrimivv
- ralrimivva
- ralrimivvva
- ralrimdvv
- ralrimdvva
- ralbidv2
- ralbidva
- ralbidv
- 2ralbidva
- 2ralbidv
- r2allem
- r2al
- r3al
- rgen2
- rgen3
- rspw
- rsp
- rspa
- rspec
- r19.21bi
- r19.21be
- rspec2
- rspec3
- rsp2
- r19.21t
- r19.21
- ralrimi
- ralimdaa
- ralrimd
- nfra1
- hbra1
- hbral
- r2alf
- nfraldw
- nfraldwOLD
- nfrald
- nfralw
- nfral
- nfra2w
- nfra2wOLD
- nfra2wOLDOLD
- nfra2
- rgen2a
- ralbida
- ralbidaOLD
- ralbid
- 2ralbida
- raleqbii
- ralcom4
- ralcom4OLD
- ralnex
- dfral2
- rexnal
- dfrex2
- rexex
- rexim
- rexbi
- rexbiOLD
- reximi2
- reximia
- reximiaOLD
- reximi
- rexbii2
- rexbiia
- rexbii
- 2rexbii
- rexcom4
- 2ex2rexrot
- rexcom4a
- rexanid
- r19.29
- r19.29r
- r19.29imd
- rexnal2
- rexnal3
- ralnex2
- ralnex3
- ralinexa
- rexanali
- nrexralim
- risset
- nelb
- nelbOLD
- nrex
- nrexdv
- reximdv2
- reximdvai
- reximdvaiOLD
- reximdv
- reximdva
- reximddv
- reximssdv
- reximdvva
- reximddv2
- r19.23v
- rexlimiv
- rexlimiva
- rexlimivw
- rexlimdv
- rexlimdva
- rexlimdvaa
- rexlimdv3a
- rexlimdva2
- r19.29an
- r19.29a
- rexlimdvw
- rexlimddv
- rexlimivv
- rexlimdvv
- rexlimdvva
- rexbidv2
- rexbidva
- rexbidv
- 2rexbiia
- 2rexbidva
- 2rexbidv
- rexralbidv
- r2exlem
- r2ex
- rspe
- rsp2e
- nfre1
- nfrexd
- nfrexdg
- nfrex
- nfrexg
- reximdai
- reximd2a
- r19.23t
- r19.23
- rexlimi
- rexlimd2
- rexlimd
- rexbida
- rexbidvaALT
- rexbid
- rexbidvALT
- ralrexbid
- ralrexbidOLD
- r19.12
- r19.12OLD
- r2exf
- rexeqbii
- reuanid
- rmoanid
- r19.29af2
- r19.29af
- 2r19.29
- r19.29d2r
- r19.29d2rOLD
- r19.29vva
- r19.29vvaOLD
- r19.30
- r19.30OLD
- r19.32v
- r19.35
- r19.36v
- r19.37
- r19.37v
- r19.40
- r19.41v
- r19.41
- r19.41vv
- r19.42v
- r19.43
- r19.44v
- r19.45v
- ralcom
- rexcom
- ralcomf
- rexcomf
- ralcom13
- rexcom13
- ralrot3
- rexrot4
- ralcom2
- ralcom3
- reeanlem
- reean
- reeanv
- 3reeanv
- 2ralor
- 2ralorOLD
- nfreu1
- nfrmo1
- nfreud
- nfrmod
- nfrmow
- nfreuw
- nfreuwOLD
- nfrmowOLD
- nfreu
- nfrmo
- rabid
- rabrab
- rabidim1
- rabid2f
- rabid2
- rabid2OLD
- rabbi
- nfrab1
- nfrabw
- nfrabwOLD
- nfrab
- reubida
- reubidva
- reubidv
- reubiia
- reubii
- rmobida
- rmobidva
- rmobidvaOLD
- rmobidv
- rmobiia
- rmobii
- raleqf
- rexeqf
- reueq1f
- rmoeq1f
- raleqbidv
- rexeqbidv
- raleqbidvv
- rexeqbidvv
- raleqbi1dv
- rexeqbi1dv
- raleq
- rexeq
- reueq1
- rmoeq1
- raleqi
- rexeqi
- raleqdv
- rexeqdv
- reueqd
- rmoeqd
- raleqbid
- rexeqbid
- raleqbidva
- rexeqbidva
- raleleq
- raleleqALT
- moel
- moelOLD
- mormo
- reu5
- reurex
- 2reu2rex
- reurmo
- rmo5
- nrexrmo
- reueubd
- cbvralfw
- cbvralfwOLD
- cbvrexfw
- cbvralf
- cbvrexf
- cbvralw
- cbvrexw
- cbvreuw
- cbvrmow
- cbvrmowOLD
- cbvral
- cbvrex
- cbvreu
- cbvrmo
- cbvralvw
- cbvrexvw
- cbvrmovw
- cbvreuvw
- cbvreuvwOLD
- cbvralv
- cbvrexv
- cbvreuv
- cbvrmov
- cbvraldva2
- cbvrexdva2
- cbvraldva
- cbvrexdva
- cbvral2vw
- cbvrex2vw
- cbvral3vw
- cbvral2v
- cbvrex2v
- cbvral3v
- cbvralsvw
- cbvrexsvw
- cbvralsv
- cbvrexsv
- sbralie
- rabbiia
- rabbii
- rabbida
- rabbid
- rabbidva2
- rabbia2
- rabbidva
- rabbidvaOLD
- rabbidv
- rabeqf
- rabeqi
- rabeqiOLD
- rabeq
- rabeqdv
- rabeqbidv
- rabeqbidva
- rabeq2i
- rabswap
- cbvrabw
- cbvrab
- cbvrabv
- rabrabi
- rabrabiOLD
- rabeqcda
- ralrimia
- ralimda
- The universal class
- cvv
- vjust
- df-v
- dfv2
- vex
- vexOLD
- elv
- elvd
- el2v
- eqv
- eqvf
- abv
- abvALT
- isset
- issetf
- isseti
- issetri
- eqvisset
- elex
- elexi
- elexd
- elex2OLD
- elex22
- prcnel
- ralv
- rexv
- reuv
- rmov
- rabab
- rexcom4b
- ceqsalt
- ceqsralt
- ceqsalg
- ceqsalgALT
- ceqsal
- ceqsalv
- ceqsalvOLD
- ceqsralv
- ceqsralvOLD
- gencl
- 2gencl
- 3gencl
- cgsexg
- cgsex2g
- cgsex4g
- cgsex4gOLD
- ceqsex
- ceqsexv
- ceqsexvOLD
- ceqsexv2d
- ceqsex2
- ceqsex2v
- ceqsex3v
- ceqsex4v
- ceqsex6v
- ceqsex8v
- gencbvex
- gencbvex2
- gencbval
- sbhypf
- vtoclgft
- vtocldf
- vtocld
- vtocldOLD
- vtocl2d
- vtoclf
- vtocl
- vtoclALT
- vtocl2
- vtocl3
- vtoclb
- vtoclgf
- vtoclg1f
- vtoclg
- vtoclgOLD
- vtoclbg
- vtocl2gf
- vtocl3gf
- vtocl2g
- vtocl3g
- vtoclgaf
- vtoclga
- vtocl2ga
- vtocl2gaf
- vtocl3gaf
- vtocl3ga
- vtocl3gaOLD
- vtocl4g
- vtocl4ga
- vtocleg
- vtoclegft
- vtoclef
- vtocle
- vtoclri
- spcimgft
- spcgft
- spcimgf
- spcimegf
- spcgf
- spcegf
- spcimdv
- spcdv
- spcimedv
- spcgv
- spcegv
- spcedv
- spc2egv
- spc2gv
- spc2ed
- spc2d
- spc3egv
- spc3gv
- spcv
- spcev
- spc2ev
- rspct
- rspcdf
- rspc
- rspce
- rspcimdv
- rspcimedv
- rspcdv
- rspcedv
- rspcebdv
- rspcdv2
- rspcv
- rspcvOLD
- rspccv
- rspcva
- rspccva
- rspcev
- rspcevOLD
- rspcdva
- rspcedvd
- rspcime
- rspceaimv
- rspcedeq1vd
- rspcedeq2vd
- rspc2
- rspc2gv
- rspc2v
- rspc2va
- rspc2ev
- rspc3v
- rspc3ev
- rspceeqv
- ralxpxfr2d
- rexraleqim
- eqvincg
- eqvinc
- eqvincf
- alexeqg
- ceqex
- ceqsexg
- ceqsexgv
- ceqsexgvOLD
- ceqsrexv
- ceqsrexbv
- ceqsrex2v
- clel2g
- clel2gOLD
- clel2
- clel3g
- clel3
- clel4g
- clel4
- clel4OLD
- clel5
- pm13.183
- rr19.3v
- rr19.28v
- elab6g
- elabd2
- elabd3
- elabgt
- elabgtOLD
- elabgf
- elabf
- elabg
- elabgOLD
- elab
- elabOLD
- elab2g
- elabd
- elab2
- elab4g
- elab3gf
- elab3g
- elab3
- elrabi
- elrabiOLD
- elrabf
- rabtru
- rabeqc
- elrab3t
- elrab
- elrab3
- elrabd
- elrab2
- ralab
- ralabOLD
- ralrab
- rexab
- rexabOLD
- rexrab
- ralab2
- ralab2OLD
- ralrab2
- rexab2
- rexab2OLD
- rexrab2
- abidnf
- dedhb
- nelrdva
- eqeu
- moeq
- eueq
- eueqi
- eueq2
- eueq3
- moeq3
- mosub
- mo2icl
- mob2
- moi2
- mob
- moi
- morex
- euxfr2w
- euxfrw
- euxfr2
- euxfr
- euind
- reu2
- reu6
- reu3
- reu6i
- eqreu
- rmo4
- reu4
- reu7
- reu8
- rmo3f
- rmo4f
- reu2eqd
- reueq
- rmoeq
- rmoan
- rmoim
- rmoimia
- rmoimi
- rmoimi2
- 2reu5a
- reuimrmo
- 2reuswap
- 2reuswap2
- reuxfrd
- reuxfr
- reuxfr1d
- reuxfr1ds
- reuxfr1
- reuind
- 2rmorex
- 2reu5lem1
- 2reu5lem2
- 2reu5lem3
- 2reu5
- 2reurmo
- 2reurex
- 2rmoswap
- 2rexreu
- Conditional equality (experimental)
- wcdeq
- df-cdeq
- cdeqi
- cdeqri
- cdeqth
- cdeqnot
- cdeqal
- cdeqab
- cdeqal1
- cdeqab1
- cdeqim
- cdeqcv
- cdeqeq
- cdeqel
- nfcdeq
- nfccdeq
- Russell's Paradox
- rru
- ru
- Proper substitution of classes for sets
- wsbc
- df-sbc
- dfsbcq
- dfsbcq2
- sbsbc
- sbceq1d
- sbceq1dd
- sbceqbid
- sbc8g
- sbc2or
- sbcex
- sbceq1a
- sbceq2a
- spsbc
- spsbcd
- sbcth
- sbcthdv
- sbcid
- nfsbc1d
- nfsbc1
- nfsbc1v
- nfsbcdw
- nfsbcw
- sbccow
- nfsbcd
- nfsbc
- sbcco
- sbcco2
- sbc5
- sbc5ALT
- sbc6g
- sbc6gOLD
- sbc6
- sbc7
- cbvsbcw
- cbvsbcvw
- cbvsbc
- cbvsbcv
- sbciegft
- sbciegf
- sbcieg
- sbciegOLD
- sbcie2g
- sbcie
- sbciedf
- sbcied
- sbciedOLD
- sbcied2
- elrabsf
- eqsbc1
- sbcng
- sbcimg
- sbcan
- sbcor
- sbcbig
- sbcn1
- sbcim1
- sbcim1OLD
- sbcbid
- sbcbidv
- sbcbidvOLD
- sbcbii
- sbcbi1
- sbcbi2
- sbcbi2OLD
- sbcal
- sbcex2
- sbceqal
- sbceqalOLD
- sbeqalb
- eqsbc2
- sbc3an
- sbcel1v
- sbcel2gv
- sbcel21v
- sbcimdv
- sbcimdvOLD
- sbctt
- sbcgf
- sbc19.21g
- sbcg
- sbcgOLD
- sbcgfi
- sbc2iegf
- sbc2ie
- sbc2ieOLD
- sbc2iedv
- sbc3ie
- sbccomlem
- sbccom
- sbcralt
- sbcrext
- sbcralg
- sbcrex
- sbcreu
- reu8nf
- sbcabel
- rspsbc
- rspsbca
- rspesbca
- spesbc
- spesbcd
- sbcth2
- ra4v
- ra4
- rmo2
- rmo2i
- rmo3
- rmob
- rmoi
- rmob2
- rmoi2
- rmoanim
- rmoanimALT
- reuan
- 2reu1
- 2reu2
- Proper substitution of classes for sets into classes
- csb
- df-csb
- csb2
- csbeq1
- csbeq1d
- csbeq2
- csbeq2d
- csbeq2dv
- csbeq2i
- csbeq12dv
- cbvcsbw
- cbvcsb
- cbvcsbv
- csbid
- csbeq1a
- csbcow
- csbco
- csbtt
- csbconstgf
- csbconstg
- csbconstgOLD
- csbgfi
- csbconstgi
- nfcsb1d
- nfcsb1
- nfcsb1v
- nfcsbd
- nfcsbw
- nfcsb
- csbhypf
- csbiebt
- csbiedf
- csbieb
- csbiebg
- csbiegf
- csbief
- csbie
- csbieOLD
- csbied
- csbiedOLD
- csbied2
- csbie2t
- csbie2
- csbie2g
- cbvrabcsfw
- cbvralcsf
- cbvrexcsf
- cbvreucsf
- cbvrabcsf
- cbvralv2
- cbvrexv2
- rspc2vd
- Define basic set operations and relations
- cdif
- cun
- cin
- wss
- wpss
- difjust
- df-dif
- unjust
- df-un
- injust
- df-in
- dfin5
- dfdif2
- eldif
- eldifd
- eldifad
- eldifbd
- elneeldif
- velcomp
- elin
- Subclasses and subsets
- df-ss
- dfss
- df-pss
- dfss2
- dfss2OLD
- dfss3
- dfss6
- dfss2f
- dfss3f
- nfss
- ssel
- sselOLD
- ssel2
- sseli
- sselii
- sselid
- sseld
- sselda
- sseldd
- ssneld
- ssneldd
- ssriv
- ssrd
- ssrdv
- sstr2
- sstr
- sstri
- sstrd
- sstrid
- sstrdi
- sylan9ss
- sylan9ssr
- eqss
- eqssi
- eqssd
- sssseq
- eqrd
- eqri
- eqelssd
- ssid
- ssidd
- ssv
- sseq1
- sseq2
- sseq12
- sseq1i
- sseq2i
- sseq12i
- sseq1d
- sseq2d
- sseq12d
- eqsstri
- eqsstrri
- sseqtri
- sseqtrri
- eqsstrd
- eqsstrrd
- sseqtrd
- sseqtrrd
- 3sstr3i
- 3sstr4i
- 3sstr3g
- 3sstr4g
- 3sstr3d
- 3sstr4d
- eqsstrid
- eqsstrrid
- sseqtrdi
- sseqtrrdi
- sseqtrid
- sseqtrrid
- eqsstrdi
- eqsstrrdi
- eqimss
- eqimss2
- eqimssi
- eqimss2i
- nssne1
- nssne2
- nss
- nelss
- ssrexf
- ssrmof
- ssralv
- ssrexv
- ss2ralv
- ss2rexv
- ralss
- rexss
- ss2ab
- abss
- ssab
- ssabral
- ss2abdv
- ss2abdvALT
- ss2abdvOLD
- ss2abi
- ss2abiOLD
- abssdv
- abssi
- ss2rab
- rabss
- ssrab
- ssrabdv
- rabssdv
- ss2rabdv
- ss2rabi
- rabss2
- ssab2
- ssrab2
- ssrab2OLD
- ssrab3
- rabssrabd
- ssrabeq
- rabssab
- uniiunlem
- dfpss2
- dfpss3
- psseq1
- psseq2
- psseq1i
- psseq2i
- psseq12i
- psseq1d
- psseq2d
- psseq12d
- pssss
- pssne
- pssssd
- pssned
- sspss
- pssirr
- pssn2lp
- sspsstri
- ssnpss
- psstr
- sspsstr
- psssstr
- psstrd
- sspsstrd
- psssstrd
- npss
- ssnelpss
- ssnelpssd
- ssexnelpss
- The difference, union, and intersection of two classes
- The difference of two classes
- The union of two classes
- The intersection of two classes
- The symmetric difference of two classes
- Combinations of difference, union, and intersection of two classes
- Class abstractions with difference, union, and intersection of two classes
- Restricted uniqueness with difference, union, and intersection
- The empty set
- c0
- df-nul
- dfnul4
- dfnul2
- dfnul3
- dfnul2OLD
- dfnul3OLD
- dfnul4OLD
- noel
- noelOLD
- nel02
- n0i
- ne0i
- ne0d
- n0ii
- ne0ii
- vn0
- vn0ALT
- eq0f
- neq0f
- n0f
- eq0
- eq0ALT
- neq0
- n0
- eq0OLDOLD
- neq0OLD
- n0OLD
- nel0
- reximdva0
- rspn0
- rspn0OLD
- n0rex
- ssn0rex
- n0moeu
- rex0
- reu0
- rmo0
- 0el
- n0el
- eqeuel
- ssdif0
- difn0
- pssdifn0
- pssdif
- ndisj
- difin0ss
- inssdif0
- difid
- difidALT
- dif0
- ab0w
- ab0
- ab0OLD
- ab0ALT
- dfnf5
- ab0orv
- ab0orvALT
- abn0
- abn0OLD
- rab0
- rabeq0w
- rabeq0
- rabn0
- rabxm
- rabnc
- elneldisj
- elnelun
- un0
- in0
- 0un
- 0in
- inv1
- unv
- 0ss
- ss0b
- ss0
- sseq0
- ssn0
- 0dif
- abf
- abfOLD
- eq0rdv
- eq0rdvALT
- csbprc
- csb0
- sbcel12
- sbceqg
- sbceqi
- sbcnel12g
- sbcne12
- sbcel1g
- sbceq1g
- sbcel2
- sbceq2g
- csbcom
- sbcnestgfw
- csbnestgfw
- sbcnestgw
- csbnestgw
- sbcco3gw
- sbcnestgf
- csbnestgf
- sbcnestg
- csbnestg
- sbcco3g
- csbco3g
- csbnest1g
- csbidm
- csbvarg
- csbvargi
- sbccsb
- sbccsb2
- rspcsbela
- sbnfc2
- csbab
- csbun
- csbin
- csbie2df
- 2nreu
- un00
- vss
- 0pss
- npss0
- pssv
- disj
- disjOLD
- disjr
- disj1
- reldisj
- reldisjOLD
- disj3
- disjne
- disjeq0
- disjel
- disj2
- disj4
- ssdisj
- disjpss
- undisj1
- undisj2
- ssindif0
- inelcm
- minel
- undif4
- disjssun
- vdif0
- difrab0eq
- pssnel
- disjdif
- disjdifr
- difin0
- unvdif
- undif1
- undif2
- undifabs
- inundif
- disjdif2
- difun2
- undif
- ssdifin0
- ssdifeq0
- ssundif
- difcom
- pssdifcom1
- pssdifcom2
- difdifdir
- uneqdifeq
- raldifeq
- r19.2z
- r19.2zb
- r19.3rz
- r19.28z
- r19.3rzv
- r19.9rzv
- r19.28zv
- r19.37zv
- r19.45zv
- r19.44zv
- r19.27z
- r19.27zv
- r19.36zv
- ralidmw
- rzal
- rzalALT
- rexn0
- ralidm
- ral0
- ralf0
- rexn0OLD
- ralidmOLD
- ral0OLD
- ralf0OLD
- ralnralall
- falseral0
- raaan
- raaanv
- sbss
- sbcssg
- raaan2
- 2reu4lem
- 2reu4
- csbdif
- The conditional operator for classes
- cif
- df-if
- dfif2
- dfif6
- ifeq1
- ifeq2
- iftrue
- iftruei
- iftrued
- iffalse
- iffalsei
- iffalsed
- ifnefalse
- ifsb
- dfif3
- dfif4
- dfif5
- ifssun
- ifeq12
- ifeq1d
- ifeq2d
- ifeq12d
- ifbi
- ifbid
- ifbieq1d
- ifbieq2i
- ifbieq2d
- ifbieq12i
- ifbieq12d
- nfifd
- nfif
- ifeq1da
- ifeq2da
- ifeq12da
- ifbieq12d2
- ifclda
- ifeqda
- elimif
- ifbothda
- ifboth
- ifid
- eqif
- ifval
- elif
- ifel
- ifcl
- ifcld
- ifcli
- ifexd
- ifexg
- ifex
- ifeqor
- ifnot
- ifan
- ifor
- 2if2
- ifcomnan
- csbif
- The weak deduction theorem for set theory
- dedth
- dedth2h
- dedth3h
- dedth4h
- dedth2v
- dedth3v
- dedth4v
- elimhyp
- elimhyp2v
- elimhyp3v
- elimhyp4v
- elimel
- elimdhyp
- keephyp
- keephyp2v
- keephyp3v
- Power classes
- cpw
- pwjust
- df-pw
- elpwg
- elpw
- velpw
- elpwOLD
- elpwgOLD
- elpwd
- elpwi
- elpwb
- elpwid
- elelpwi
- sspw
- sspwi
- sspwd
- pweq
- pweqALT
- pweqi
- pweqd
- pwunss
- nfpw
- pwidg
- pwidb
- pwid
- pwss
- pwundif
- Unordered and ordered pairs
- snjust
- csn
- df-sn
- cpr
- df-pr
- ctp
- df-tp
- cop
- df-op
- cotp
- df-ot
- sneq
- sneqi
- sneqd
- dfsn2
- elsng
- elsn
- velsn
- elsni
- absn
- dfpr2
- dfsn2ALT
- elprg
- elpri
- elpr
- elpr2g
- elpr2
- elpr2OLD
- nelpr2
- nelpr1
- nelpri
- prneli
- nelprd
- eldifpr
- rexdifpr
- snidg
- snidb
- snid
- vsnid
- elsn2g
- elsn2
- nelsn
- rabeqsn
- rabsssn
- ralsnsg
- rexsns
- rexsngf
- ralsngf
- reusngf
- ralsng
- rexsng
- reusng
- 2ralsng
- ralsngOLD
- rexsngOLD
- rexreusng
- exsnrex
- ralsn
- rexsn
- elpwunsn
- eqoreldif
- eltpg
- eldiftp
- eltpi
- eltp
- dftp2
- nfpr
- ifpr
- ralprgf
- rexprgf
- ralprg
- ralprgOLD
- rexprg
- rexprgOLD
- raltpg
- rextpg
- ralpr
- rexpr
- reuprg0
- reuprg
- reurexprg
- raltp
- rextp
- nfsn
- csbsng
- csbprg
- elinsn
- disjsn
- disjsn2
- disjpr2
- disjprsn
- disjtpsn
- disjtp2
- snprc
- snnzb
- rmosn
- r19.12sn
- rabsn
- rabsnifsb
- rabsnif
- rabrsn
- euabsn2
- euabsn
- reusn
- absneu
- rabsneu
- eusn
- rabsnt
- prcom
- preq1
- preq2
- preq12
- preq1i
- preq2i
- preq12i
- preq1d
- preq2d
- preq12d
- tpeq1
- tpeq2
- tpeq3
- tpeq1d
- tpeq2d
- tpeq3d
- tpeq123d
- tprot
- tpcoma
- tpcomb
- tpass
- qdass
- qdassr
- tpidm12
- tpidm13
- tpidm23
- tpidm
- tppreq3
- prid1g
- prid2g
- prid1
- prid2
- ifpprsnss
- prprc1
- prprc2
- prprc
- tpid1
- tpid1g
- tpid2
- tpid2g
- tpid3g
- tpid3
- snnzg
- snn0d
- snnz
- prnz
- prnzg
- tpnz
- tpnzd
- raltpd
- snssg
- snss
- eldifsn
- ssdifsn
- elpwdifsn
- eldifsni
- eldifsnneq
- neldifsn
- neldifsnd
- rexdifsn
- raldifsni
- raldifsnb
- eldifvsn
- difsn
- difprsnss
- difprsn1
- difprsn2
- diftpsn3
- difpr
- tpprceq3
- tppreqb
- difsnb
- difsnpss
- snssi
- snssd
- difsnid
- eldifeldifsn
- pw0
- pwpw0
- snsspr1
- snsspr2
- snsstp1
- snsstp2
- snsstp3
- prssg
- prss
- prssi
- prssd
- prsspwg
- ssprss
- ssprsseq
- sssn
- ssunsn2
- ssunsn
- eqsn
- issn
- n0snor2el
- ssunpr
- sspr
- sstp
- tpss
- tpssi
- sneqrg
- sneqr
- snsssn
- mosneq
- sneqbg
- snsspw
- prsspw
- preq1b
- preq2b
- preqr1
- preqr2
- preq12b
- opthpr
- preqr1g
- preq12bg
- prneimg
- prnebg
- pr1eqbg
- pr1nebg
- preqsnd
- prnesn
- prneprprc
- preqsn
- preq12nebg
- prel12g
- opthprneg
- elpreqprlem
- elpreqpr
- elpreqprb
- elpr2elpr
- dfopif
- dfopifOLD
- dfopg
- dfop
- opeq1
- opeq2
- opeq12
- opeq1i
- opeq2i
- opeq12i
- opeq1d
- opeq2d
- opeq12d
- oteq1
- oteq2
- oteq3
- oteq1d
- oteq2d
- oteq3d
- oteq123d
- nfop
- nfopd
- csbopg
- opidg
- opid
- ralunsn
- 2ralunsn
- opprc
- opprc1
- opprc2
- oprcl
- pwsn
- pwsnOLD
- pwpr
- pwtp
- pwpwpw0
- pwv
- prproe
- 3elpr2eq
- The union of a class
- cuni
- df-uni
- dfuni2
- eluni
- eluni2
- elunii
- nfunid
- nfuni
- uniss
- unissi
- unissd
- unieq
- unieqOLD
- unieqi
- unieqd
- eluniab
- elunirab
- uniprg
- unipr
- uniprOLD
- uniprgOLD
- unisng
- unisn
- unisn3
- dfnfc2
- uniun
- uniin
- ssuni
- uni0b
- uni0c
- uni0
- csbuni
- elssuni
- unissel
- unissb
- uniss2
- unidif
- ssunieq
- unimax
- pwuni
- The intersection of a class
- cint
- df-int
- dfint2
- inteq
- inteqi
- inteqd
- elint
- elint2
- elintg
- elinti
- nfint
- elintab
- elintrab
- elintrabg
- int0
- intss1
- ssint
- ssintab
- ssintub
- ssmin
- intmin
- intss
- intssuni
- ssintrab
- unissint
- intssuni2
- intminss
- intmin2
- intmin3
- intmin4
- intab
- int0el
- intun
- intprg
- intpr
- intprOLD
- intprgOLD
- intsng
- intsn
- uniintsn
- uniintab
- intunsn
- rint0
- elrint
- elrint2
- Indexed union and intersection
- ciun
- ciin
- df-iun
- df-iin
- eliun
- eliin
- eliuni
- iuncom
- iuncom4
- iunconst
- iinconst
- iuneqconst
- iuniin
- iinssiun
- iunss1
- iinss1
- iuneq1
- iineq1
- ss2iun
- iuneq2
- iineq2
- iuneq2i
- iineq2i
- iineq2d
- iuneq2dv
- iineq2dv
- iuneq12df
- iuneq1d
- iuneq12d
- iuneq2d
- nfiun
- nfiin
- nfiung
- nfiing
- nfiu1
- nfii1
- dfiun2g
- dfiin2g
- dfiun2
- dfiin2
- dfiunv2
- cbviun
- cbviin
- cbviung
- cbviing
- cbviunv
- cbviinv
- cbviunvg
- cbviinvg
- iunssf
- iunss
- ssiun
- ssiun2
- ssiun2s
- iunss2
- iunssd
- iunab
- iunrab
- iunxdif2
- ssiinf
- ssiin
- iinss
- iinss2
- uniiun
- intiin
- iunid
- iun0
- 0iun
- 0iin
- viin
- iunsn
- iunn0
- iinab
- iinrab
- iinrab2
- iunin2
- iunin1
- iinun2
- iundif2
- iindif1
- 2iunin
- iindif2
- iinin2
- iinin1
- iinvdif
- elriin
- riin0
- riinn0
- riinrab
- symdif0
- symdifv
- symdifid
- iinxsng
- iinxprg
- iunxsng
- iunxsn
- iunxsngf
- iunun
- iunxun
- iunxdif3
- iunxprg
- iunxiun
- iinuni
- iununi
- sspwuni
- pwssb
- elpwpw
- pwpwab
- pwpwssunieq
- elpwuni
- iinpw
- iunpwss
- intss2
- rintn0
- Disjointness
- wdisj
- df-disj
- dfdisj2
- disjss2
- disjeq2
- disjeq2dv
- disjss1
- disjeq1
- disjeq1d
- disjeq12d
- cbvdisj
- cbvdisjv
- nfdisjw
- nfdisj
- nfdisj1
- disjor
- disjors
- disji2
- disji
- invdisj
- invdisjrabw
- invdisjrab
- disjiun
- disjord
- disjiunb
- disjiund
- sndisj
- 0disj
- disjxsn
- disjx0
- disjprgw
- disjprg
- disjxiun
- disjxun
- disjss3
- Binary relations
- wbr
- df-br
- breq
- breq1
- breq2
- breq12
- breqi
- breq1i
- breq2i
- breq12i
- breq1d
- breqd
- breq2d
- breq12d
- breq123d
- breqdi
- breqan12d
- breqan12rd
- eqnbrtrd
- nbrne1
- nbrne2
- eqbrtri
- eqbrtrd
- eqbrtrri
- eqbrtrrd
- breqtri
- breqtrd
- breqtrri
- breqtrrd
- 3brtr3i
- 3brtr4i
- 3brtr3d
- 3brtr4d
- 3brtr3g
- 3brtr4g
- eqbrtrid
- eqbrtrrid
- breqtrid
- breqtrrid
- eqbrtrdi
- eqbrtrrdi
- breqtrdi
- breqtrrdi
- ssbrd
- ssbr
- ssbri
- nfbrd
- nfbr
- brab1
- br0
- brne0
- brun
- brin
- brdif
- sbcbr123
- sbcbr
- sbcbr12g
- sbcbr1g
- sbcbr2g
- brsymdif
- brralrspcev
- brimralrspcev
- Ordered-pair class abstractions (class builders)
- copab
- df-opab
- opabss
- opabbid
- opabbidv
- opabbii
- nfopabd
- nfopab
- nfopab1
- nfopab2
- cbvopab
- cbvopabv
- cbvopabvOLD
- cbvopab1
- cbvopab1g
- cbvopab2
- cbvopab1s
- cbvopab1v
- cbvopab1vOLD
- cbvopab2v
- unopab
- Functions in maps-to notation
- cmpt
- df-mpt
- mpteq12da
- mpteq12df
- mpteq12dfOLD
- mpteq12f
- mpteq12dva
- mpteq12dvaOLD
- mpteq12dv
- mpteq12
- mpteq1
- mpteq1OLD
- mpteq1d
- mpteq1i
- mpteq1iOLD
- mpteq2da
- mpteq2daOLD
- mpteq2dva
- mpteq2dvaOLD
- mpteq2dv
- mpteq2ia
- mpteq2iaOLD
- mpteq2i
- mpteq12i
- nfmpt
- nfmpt1
- cbvmptf
- cbvmptfg
- cbvmpt
- cbvmptg
- cbvmptv
- cbvmptvOLD
- cbvmptvg
- mptv
- Transitive classes
- wtr
- df-tr
- dftr2
- dftr5
- dftr3
- dftr4
- treq
- trel
- trel3
- trss
- trin
- tr0
- trv
- triun
- truni
- triin
- trint
- trintss