Metamath Proof Explorer
Table of Contents - 5.4.7. Nonnegative integers (as a subset of complex numbers)
- cn0
- df-n0
- elnn0
- nnssnn0
- nn0ssre
- nn0sscn
- nn0ex
- nnnn0
- nnnn0i
- nn0re
- nn0cn
- nn0rei
- nn0cni
- dfn2
- elnnne0
- 0nn0
- 1nn0
- 2nn0
- 3nn0
- 4nn0
- 5nn0
- 6nn0
- 7nn0
- 8nn0
- 9nn0
- nn0ge0
- nn0nlt0
- nn0ge0i
- nn0le0eq0
- nn0p1gt0
- nnnn0addcl
- nn0nnaddcl
- 0mnnnnn0
- un0addcl
- un0mulcl
- nn0addcl
- nn0mulcl
- nn0addcli
- nn0mulcli
- nn0p1nn
- peano2nn0
- nnm1nn0
- elnn0nn
- elnnnn0
- elnnnn0b
- elnnnn0c
- nn0addge1
- nn0addge2
- nn0addge1i
- nn0addge2i
- nn0sub
- ltsubnn0
- nn0negleid
- difgtsumgt
- nn0le2xi
- nn0lele2xi
- fcdmnn0supp
- fcdmnn0fsupp
- fcdmnn0suppg
- fcdmnn0fsuppg
- nnnn0d
- nn0red
- nn0cnd
- nn0ge0d
- nn0addcld
- nn0mulcld
- nn0readdcl
- nn0n0n1ge2
- nn0n0n1ge2b
- nn0ge2m1nn
- nn0ge2m1nn0
- nn0nndivcl