Metamath Proof Explorer


Table of Contents - 5.5.1. Positive reals (as a subset of complex numbers)

  1. crp
  2. df-rp
  3. elrp
  4. elrpii
  5. 1rp
  6. 2rp
  7. 3rp
  8. 5rp
  9. rpssre
  10. rpre
  11. rpxr
  12. rpcn
  13. nnrp
  14. rpgt0
  15. rpge0
  16. rpregt0
  17. rprege0
  18. rpne0
  19. rprene0
  20. rpcnne0
  21. rpcndif0
  22. ralrp
  23. rexrp
  24. rpaddcl
  25. rpmulcl
  26. rpmtmip
  27. rpdivcl
  28. rpreccl
  29. rphalfcl
  30. rpgecl
  31. rphalflt
  32. rerpdivcl
  33. ge0p1rp
  34. rpneg
  35. negelrp
  36. negelrpd
  37. 0nrp
  38. ltsubrp
  39. ltaddrp
  40. difrp
  41. elrpd
  42. nnrpd
  43. zgt1rpn0n1
  44. rpred
  45. rpxrd
  46. rpcnd
  47. rpgt0d
  48. rpge0d
  49. rpne0d
  50. rpregt0d
  51. rprege0d
  52. rprene0d
  53. rpcnne0d
  54. rpreccld
  55. rprecred
  56. rphalfcld
  57. reclt1d
  58. recgt1d
  59. rpaddcld
  60. rpmulcld
  61. rpdivcld
  62. ltrecd
  63. lerecd
  64. ltrec1d
  65. lerec2d
  66. lediv2ad
  67. ltdiv2d
  68. lediv2d
  69. ledivdivd
  70. divge1
  71. divlt1lt
  72. divle1le
  73. ledivge1le
  74. ge0p1rpd
  75. rerpdivcld
  76. ltsubrpd
  77. ltaddrpd
  78. ltaddrp2d
  79. ltmulgt11d
  80. ltmulgt12d
  81. gt0divd
  82. ge0divd
  83. rpgecld
  84. divge0d
  85. ltmul1d
  86. ltmul2d
  87. lemul1d
  88. lemul2d
  89. ltdiv1d
  90. lediv1d
  91. ltmuldivd
  92. ltmuldiv2d
  93. lemuldivd
  94. lemuldiv2d
  95. ltdivmuld
  96. ltdivmul2d
  97. ledivmuld
  98. ledivmul2d
  99. ltmul1dd
  100. ltmul2dd
  101. ltdiv1dd
  102. lediv1dd
  103. lediv12ad
  104. mul2lt0rlt0
  105. mul2lt0rgt0
  106. mul2lt0llt0
  107. mul2lt0lgt0
  108. mul2lt0bi
  109. prodge0rd
  110. prodge0ld
  111. ltdiv23d
  112. lediv23d
  113. lt2mul2divd
  114. nnledivrp
  115. nn0ledivnn
  116. addlelt
  117. ge2halflem1