Metamath Proof Explorer


Table of Contents - 1.2. Propositional calculus

Propositional calculus deals with general truths about well-formed formulas (wffs) regardless of how they are constructed. The simplest propositional truth is , which can be read "if something is true, then it is true" - rather trivial and obvious, but nonetheless it must be proved from the axioms (see Theorem id).

Our system of propositional calculus consists of three basic axioms and another axiom that defines the modus-ponens inference rule. It is attributed to Jan Lukasiewicz (pronounced woo-kah-SHAY-vitch) and was popularized by Alonzo Church, who called it system P2. (Thanks to Ted Ulrich for this information.) These axioms are ax-1, ax-2, ax-3, and (for modus ponens) ax-mp. Some closely followed texts include [Margaris] for the axioms and [WhiteheadRussell] for the theorems.

The propositional calculus used here is the classical system widely used by mathematicians. In particular, this logic system accepts the "law of the excluded middle" as proven in exmid, which says that a logical statement is either true or not true. This is an essential distinction of classical logic and is not a theorem of intuitionistic logic.

All 194 axioms, definitions, and theorems for propositional calculus in Principia Mathematica (specifically *1.2 through *5.75) are axioms or formally proven. See the Bibliographic Cross-References at mmbiblio.html for a complete cross-reference from sources used to its formalization in the Metamath Proof Explorer.

  1. Recursively define primitive wffs for propositional calculus
    1. wn
    2. wi
  2. The axioms of propositional calculus
    1. ax-mp
    2. ax-1
    3. ax-2
    4. ax-3
  3. Logical implication
    1. mp2
    2. mp2b
    3. a1i
    4. 2a1i
    5. mp1i
    6. a2i
    7. mpd
    8. imim2i
    9. syl
    10. 3syl
    11. 4syl
    12. mpi
    13. mpisyl
    14. id
    15. idALT
    16. idd
    17. a1d
    18. 2a1d
    19. a1i13
    20. 2a1
    21. a2d
    22. sylcom
    23. syl5com
    24. com12
    25. syl11
    26. syl5
    27. syl6
    28. syl56
    29. syl6com
    30. mpcom
    31. syli
    32. syl2im
    33. syl2imc
    34. pm2.27
    35. mpdd
    36. mpid
    37. mpdi
    38. mpii
    39. syld
    40. syldc
    41. mp2d
    42. a1dd
    43. 2a1dd
    44. pm2.43i
    45. pm2.43d
    46. pm2.43a
    47. pm2.43b
    48. pm2.43
    49. imim2d
    50. imim2
    51. embantd
    52. 3syld
    53. sylsyld
    54. imim12i
    55. imim1i
    56. imim3i
    57. sylc
    58. syl3c
    59. syl6mpi
    60. mpsyl
    61. mpsylsyld
    62. syl6c
    63. syl6ci
    64. syldd
    65. syl5d
    66. syl7
    67. syl6d
    68. syl8
    69. syl9
    70. syl9r
    71. syl10
    72. a1ddd
    73. imim12d
    74. imim1d
    75. imim1
    76. pm2.83
    77. peirceroll
    78. com23
    79. com3r
    80. com13
    81. com3l
    82. pm2.04
    83. com34
    84. com4l
    85. com4t
    86. com4r
    87. com24
    88. com14
    89. com45
    90. com35
    91. com25
    92. com5l
    93. com15
    94. com52l
    95. com52r
    96. com5r
    97. imim12
    98. jarr
    99. jarri
    100. pm2.86d
    101. pm2.86
    102. pm2.86i
    103. loolin
    104. loowoz
  4. Logical negation
    1. con4
    2. con4i
    3. con4d
    4. mt4
    5. mt4d
    6. mt4i
    7. pm2.21i
    8. pm2.24ii
    9. pm2.21d
    10. pm2.21ddALT
    11. pm2.21
    12. pm2.24
    13. jarl
    14. jarli
    15. pm2.18d
    16. pm2.18
    17. pm2.18i
    18. notnotr
    19. notnotri
    20. notnotriALT
    21. notnotrd
    22. con2d
    23. con2
    24. mt2d
    25. mt2i
    26. nsyl3
    27. con2i
    28. nsyl
    29. nsyl2
    30. notnot
    31. notnoti
    32. notnotd
    33. con1d
    34. con1
    35. con1i
    36. mt3d
    37. mt3i
    38. pm2.24i
    39. pm2.24d
    40. con3d
    41. con3
    42. con3i
    43. con3rr3
    44. nsyld
    45. nsyli
    46. nsyl4
    47. nsyl5
    48. pm3.2im
    49. jc
    50. jcn
    51. jcnd
    52. impi
    53. expi
    54. simprim
    55. simplim
    56. pm2.5g
    57. pm2.5
    58. conax1
    59. conax1k
    60. pm2.51
    61. pm2.52
    62. pm2.521g
    63. pm2.521g2
    64. pm2.521
    65. expt
    66. impt
    67. pm2.61d
    68. pm2.61d1
    69. pm2.61d2
    70. pm2.61i
    71. pm2.61ii
    72. pm2.61nii
    73. pm2.61iii
    74. ja
    75. jad
    76. pm2.01
    77. pm2.01d
    78. pm2.6
    79. pm2.61
    80. pm2.65
    81. pm2.65i
    82. pm2.21dd
    83. pm2.65d
    84. mto
    85. mtod
    86. mtoi
    87. mt2
    88. mt3
    89. peirce
    90. looinv
    91. bijust0
    92. bijust
  5. Logical equivalence
    1. wb
    2. df-bi
    3. impbi
    4. impbii
    5. impbidd
    6. impbid21d
    7. impbid
    8. dfbi1
    9. dfbi1ALT
    10. biimp
    11. biimpi
    12. sylbi
    13. sylib
    14. sylbb
    15. biimpr
    16. bicom1
    17. bicom
    18. bicomd
    19. bicomi
    20. impbid1
    21. impbid2
    22. impcon4bid
    23. biimpri
    24. biimpd
    25. mpbi
    26. mpbir
    27. mpbid
    28. mpbii
    29. sylibr
    30. sylbir
    31. sylbbr
    32. sylbb1
    33. sylbb2
    34. sylibd
    35. sylbid
    36. mpbidi
    37. biimtrid
    38. biimtrrid
    39. imbitrid
    40. syl5ibcom
    41. imbitrrid
    42. syl5ibrcom
    43. biimprd
    44. biimpcd
    45. biimprcd
    46. imbitrdi
    47. imbitrrdi
    48. biimtrdi
    49. syl6bir
    50. syl7bi
    51. syl8ib
    52. mpbird
    53. mpbiri
    54. sylibrd
    55. sylbird
    56. biid
    57. biidd
    58. pm5.1im
    59. 2th
    60. 2thd
    61. monothetic
    62. ibi
    63. ibir
    64. ibd
    65. pm5.74
    66. pm5.74i
    67. pm5.74ri
    68. pm5.74d
    69. pm5.74rd
    70. bitri
    71. bitr2i
    72. bitr3i
    73. bitr4i
    74. bitrd
    75. bitr2d
    76. bitr3d
    77. bitr4d
    78. bitrid
    79. bitr2id
    80. bitr3id
    81. bitr3di
    82. bitrdi
    83. bitr2di
    84. bitr4di
    85. bitr4id
    86. 3imtr3i
    87. 3imtr4i
    88. 3imtr3d
    89. 3imtr4d
    90. 3imtr3g
    91. 3imtr4g
    92. 3bitri
    93. 3bitrri
    94. 3bitr2i
    95. 3bitr2ri
    96. 3bitr3i
    97. 3bitr3ri
    98. 3bitr4i
    99. 3bitr4ri
    100. 3bitrd
    101. 3bitrrd
    102. 3bitr2d
    103. 3bitr2rd
    104. 3bitr3d
    105. 3bitr3rd
    106. 3bitr4d
    107. 3bitr4rd
    108. 3bitr3g
    109. 3bitr4g
    110. notnotb
    111. con34b
    112. con4bid
    113. notbid
    114. notbi
    115. notbii
    116. con4bii
    117. mtbi
    118. mtbir
    119. mtbid
    120. mtbird
    121. mtbii
    122. mtbiri
    123. sylnib
    124. sylnibr
    125. sylnbi
    126. sylnbir
    127. xchnxbi
    128. xchnxbir
    129. xchbinx
    130. xchbinxr
    131. imbi2i
    132. bibi2i
    133. bibi1i
    134. bibi12i
    135. imbi2d
    136. imbi1d
    137. bibi2d
    138. bibi1d
    139. imbi12d
    140. bibi12d
    141. imbi12
    142. imbi1
    143. imbi2
    144. imbi1i
    145. imbi12i
    146. bibi1
    147. bitr3
    148. con2bi
    149. con2bid
    150. con1bid
    151. con1bii
    152. con2bii
    153. con1b
    154. con2b
    155. biimt
    156. pm5.5
    157. a1bi
    158. mt2bi
    159. mtt
    160. imnot
    161. pm5.501
    162. ibib
    163. ibibr
    164. tbt
    165. nbn2
    166. bibif
    167. nbn
    168. nbn3
    169. pm5.21im
    170. 2false
    171. 2falsed
    172. pm5.21ni
    173. pm5.21nii
    174. pm5.21ndd
    175. bija
    176. pm5.18
    177. xor3
    178. nbbn
    179. biass
    180. biluk
    181. pm5.19
    182. bi2.04
    183. pm5.4
    184. imdi
    185. pm5.41
    186. imbibi
    187. pm4.8
    188. pm4.81
    189. imim21b
  6. Logical conjunction
    1. wa
    2. df-an
    3. pm4.63
    4. pm4.67
    5. imnan
    6. imnani
    7. iman
    8. pm3.24
    9. annim
    10. pm4.61
    11. pm4.65
    12. imp
    13. impcom
    14. con3dimp
    15. mpnanrd
    16. impd
    17. impcomd
    18. ex
    19. expcom
    20. expdcom
    21. expd
    22. expcomd
    23. imp31
    24. imp32
    25. exp31
    26. exp32
    27. imp4b
    28. imp4a
    29. imp4c
    30. imp4d
    31. imp41
    32. imp42
    33. imp43
    34. imp44
    35. imp45
    36. exp4b
    37. exp4a
    38. exp4c
    39. exp4d
    40. exp41
    41. exp42
    42. exp43
    43. exp44
    44. exp45
    45. imp5d
    46. imp5a
    47. imp5g
    48. imp55
    49. imp511
    50. exp5c
    51. exp5j
    52. exp5l
    53. exp53
    54. pm3.3
    55. pm3.31
    56. impexp
    57. impancom
    58. expdimp
    59. expimpd
    60. impr
    61. impl
    62. expr
    63. expl
    64. ancoms
    65. pm3.22
    66. ancom
    67. ancomd
    68. biancomi
    69. biancomd
    70. ancomst
    71. ancomsd
    72. anasss
    73. anassrs
    74. anass
    75. pm3.2
    76. pm3.2i
    77. pm3.21
    78. pm3.43i
    79. pm3.43
    80. dfbi2
    81. dfbi
    82. biimpa
    83. biimpar
    84. biimpac
    85. biimparc
    86. adantr
    87. adantl
    88. simpl
    89. simpli
    90. simpr
    91. simpri
    92. intnan
    93. intnanr
    94. intnand
    95. intnanrd
    96. adantld
    97. adantrd
    98. pm3.41
    99. pm3.42
    100. simpld
    101. simprd
    102. simprbi
    103. simplbi
    104. simprbda
    105. simplbda
    106. simplbi2
    107. simplbi2comt
    108. simplbi2com
    109. simpl2im
    110. simplbiim
    111. impel
    112. mpan9
    113. sylan9
    114. sylan9r
    115. sylan9bb
    116. sylan9bbr
    117. jca
    118. jcad
    119. jca2
    120. jca31
    121. jca32
    122. jcai
    123. jcab
    124. pm4.76
    125. jctil
    126. jctir
    127. jccir
    128. jccil
    129. jctl
    130. jctr
    131. jctild
    132. jctird
    133. iba
    134. ibar
    135. biantru
    136. biantrur
    137. biantrud
    138. biantrurd
    139. bianfi
    140. bianfd
    141. baib
    142. baibr
    143. rbaibr
    144. rbaib
    145. baibd
    146. rbaibd
    147. bianabs
    148. pm5.44
    149. pm5.42
    150. ancl
    151. anclb
    152. ancr
    153. ancrb
    154. ancli
    155. ancri
    156. ancld
    157. ancrd
    158. impac
    159. anc2l
    160. anc2r
    161. anc2li
    162. anc2ri
    163. pm4.71
    164. pm4.71r
    165. pm4.71i
    166. pm4.71ri
    167. pm4.71d
    168. pm4.71rd
    169. pm4.24
    170. anidm
    171. anidmdbi
    172. anidms
    173. imdistan
    174. imdistani
    175. imdistanri
    176. imdistand
    177. imdistanda
    178. pm5.3
    179. pm5.32
    180. pm5.32i
    181. pm5.32ri
    182. pm5.32d
    183. pm5.32rd
    184. pm5.32da
    185. sylan
    186. sylanb
    187. sylanbr
    188. sylanbrc
    189. syl2anc
    190. syl2anc2
    191. sylancl
    192. sylancr
    193. sylancom
    194. sylanblc
    195. sylanblrc
    196. syldan
    197. sylbida
    198. sylan2
    199. sylan2b
    200. sylan2br
    201. syl2an
    202. syl2anr
    203. syl2anb
    204. syl2anbr
    205. sylancb
    206. sylancbr
    207. syldanl
    208. syland
    209. sylani
    210. sylan2d
    211. sylan2i
    212. syl2ani
    213. syl2and
    214. anim12d
    215. anim12d1
    216. anim1d
    217. anim2d
    218. anim12i
    219. anim12ci
    220. anim1i
    221. anim1ci
    222. anim2i
    223. anim12ii
    224. anim12dan
    225. im2anan9
    226. im2anan9r
    227. pm3.45
    228. anbi2i
    229. anbi1i
    230. anbi2ci
    231. anbi1ci
    232. bianbi
    233. anbi12i
    234. anbi12ci
    235. anbi2d
    236. anbi1d
    237. anbi12d
    238. anbi1
    239. anbi2
    240. anbi1cd
    241. an2anr
    242. pm4.38
    243. bi2anan9
    244. bi2anan9r
    245. bi2bian9
    246. anbiim
    247. bianass
    248. bianassc
    249. an21
    250. an12
    251. an32
    252. an13
    253. an31
    254. an12s
    255. ancom2s
    256. an13s
    257. an32s
    258. ancom1s
    259. an31s
    260. anass1rs
    261. an4
    262. an42
    263. an43
    264. an3
    265. an4s
    266. an42s
    267. anabs1
    268. anabs5
    269. anabs7
    270. anabsan
    271. anabss1
    272. anabss4
    273. anabss5
    274. anabsi5
    275. anabsi6
    276. anabsi7
    277. anabsi8
    278. anabss7
    279. anabsan2
    280. anabss3
    281. anandi
    282. anandir
    283. anandis
    284. anandirs
    285. sylanl1
    286. sylanl2
    287. sylanr1
    288. sylanr2
    289. syl6an
    290. syl2an2r
    291. syl2an2
    292. mpdan
    293. mpancom
    294. mpidan
    295. mpan
    296. mpan2
    297. mp2an
    298. mp4an
    299. mpan2d
    300. mpand
    301. mpani
    302. mpan2i
    303. mp2ani
    304. mp2and
    305. mpanl1
    306. mpanl2
    307. mpanl12
    308. mpanr1
    309. mpanr2
    310. mpanr12
    311. mpanlr1
    312. mpbirand
    313. mpbiran2d
    314. mpbiran
    315. mpbiran2
    316. mpbir2an
    317. mpbi2and
    318. mpbir2and
    319. adantll
    320. adantlr
    321. adantrl
    322. adantrr
    323. adantlll
    324. adantllr
    325. adantlrl
    326. adantlrr
    327. adantrll
    328. adantrlr
    329. adantrrl
    330. adantrrr
    331. ad2antrr
    332. ad2antlr
    333. ad2antrl
    334. ad2antll
    335. ad3antrrr
    336. ad3antlr
    337. ad4antr
    338. ad4antlr
    339. ad5antr
    340. ad5antlr
    341. ad6antr
    342. ad6antlr
    343. ad7antr
    344. ad7antlr
    345. ad8antr
    346. ad8antlr
    347. ad9antr
    348. ad9antlr
    349. ad10antr
    350. ad10antlr
    351. ad2ant2l
    352. ad2ant2r
    353. ad2ant2lr
    354. ad2ant2rl
    355. adantl3r
    356. ad4ant13
    357. ad4ant14
    358. ad4ant23
    359. ad4ant24
    360. adantl4r
    361. ad5ant12
    362. ad5ant13
    363. ad5ant14
    364. ad5ant15
    365. ad5ant23
    366. ad5ant24
    367. ad5ant25
    368. adantl5r
    369. adantl6r
    370. pm3.33
    371. pm3.34
    372. simpll
    373. simplld
    374. simplr
    375. simplrd
    376. simprl
    377. simprld
    378. simprr
    379. simprrd
    380. simplll
    381. simpllr
    382. simplrl
    383. simplrr
    384. simprll
    385. simprlr
    386. simprrl
    387. simprrr
    388. simp-4l
    389. simp-4r
    390. simp-5l
    391. simp-5r
    392. simp-6l
    393. simp-6r
    394. simp-7l
    395. simp-7r
    396. simp-8l
    397. simp-8r
    398. simp-9l
    399. simp-9r
    400. simp-10l
    401. simp-10r
    402. simp-11l
    403. simp-11r
    404. pm2.01da
    405. pm2.18da
    406. impbida
    407. pm5.21nd
    408. pm3.35
    409. pm5.74da
    410. bitr
    411. biantr
    412. pm4.14
    413. pm3.37
    414. anim12
    415. pm3.4
    416. exbiri
    417. pm2.61ian
    418. pm2.61dan
    419. pm2.61ddan
    420. pm2.61dda
    421. mtand
    422. pm2.65da
    423. condan
    424. biadan
    425. biadani
    426. biadaniALT
    427. biadanii
    428. biadanid
    429. pm5.1
    430. pm5.21
    431. pm5.35
    432. abai
    433. pm4.45im
    434. impimprbi
    435. nan
    436. pm5.31
    437. pm5.31r
    438. pm4.15
    439. pm5.36
    440. annotanannot
    441. pm5.33
    442. syl12anc
    443. syl21anc
    444. syl22anc
    445. syl1111anc
    446. syldbl2
    447. mpsyl4anc
    448. pm4.87
    449. bimsc1
    450. a2and
    451. animpimp2impd
  7. Logical disjunction
    1. wo
    2. df-or
    3. pm4.64
    4. pm4.66
    5. pm2.53
    6. pm2.54
    7. imor
    8. imori
    9. imorri
    10. pm4.62
    11. jaoi
    12. jao1i
    13. jaod
    14. mpjaod
    15. ori
    16. orri
    17. orrd
    18. ord
    19. orci
    20. olci
    21. orc
    22. olc
    23. pm1.4
    24. orcom
    25. orcomd
    26. orcoms
    27. orcd
    28. olcd
    29. orcs
    30. olcs
    31. olcnd
    32. orcnd
    33. mtord
    34. pm3.2ni
    35. pm2.45
    36. pm2.46
    37. pm2.47
    38. pm2.48
    39. pm2.49
    40. norbi
    41. nbior
    42. orel1
    43. pm2.25
    44. orel2
    45. pm2.67-2
    46. pm2.67
    47. curryax
    48. exmid
    49. exmidd
    50. pm2.1
    51. pm2.13
    52. pm2.621
    53. pm2.62
    54. pm2.68
    55. dfor2
    56. pm2.07
    57. pm1.2
    58. oridm
    59. pm4.25
    60. pm2.4
    61. pm2.41
    62. orim12i
    63. orim1i
    64. orim2i
    65. orim12dALT
    66. orbi2i
    67. orbi1i
    68. orbi12i
    69. orbi2d
    70. orbi1d
    71. orbi1
    72. orbi12d
    73. pm1.5
    74. or12
    75. orass
    76. pm2.31
    77. pm2.32
    78. pm2.3
    79. or32
    80. or4
    81. or42
    82. orordi
    83. orordir
    84. orimdi
    85. pm2.76
    86. pm2.85
    87. pm2.75
    88. pm4.78
    89. biort
    90. biorf
    91. biortn
    92. biorfi
    93. pm2.26
    94. pm2.63
    95. pm2.64
    96. pm2.42
    97. pm5.11g
    98. pm5.11
    99. pm5.12
    100. pm5.14
    101. pm5.13
    102. pm5.55
    103. pm4.72
    104. imimorb
    105. oibabs
    106. orbidi
    107. pm5.7
  8. Mixed connectives
    1. jaao
    2. jaoa
    3. jaoian
    4. jaodan
    5. mpjaodan
    6. pm3.44
    7. jao
    8. jaob
    9. pm4.77
    10. pm3.48
    11. orim12d
    12. orim1d
    13. orim2d
    14. orim2
    15. pm2.38
    16. pm2.36
    17. pm2.37
    18. pm2.81
    19. pm2.8
    20. pm2.73
    21. pm2.74
    22. pm2.82
    23. pm4.39
    24. animorl
    25. animorr
    26. animorlr
    27. animorrl
    28. ianor
    29. anor
    30. ioran
    31. pm4.52
    32. pm4.53
    33. pm4.54
    34. pm4.55
    35. pm4.56
    36. oran
    37. pm4.57
    38. pm3.1
    39. pm3.11
    40. pm3.12
    41. pm3.13
    42. pm3.14
    43. pm4.44
    44. pm4.45
    45. orabs
    46. oranabs
    47. pm5.61
    48. pm5.6
    49. orcanai
    50. pm4.79
    51. pm5.53
    52. ordi
    53. ordir
    54. andi
    55. andir
    56. orddi
    57. anddi
    58. pm5.17
    59. pm5.15
    60. pm5.16
    61. xor
    62. nbi2
    63. xordi
    64. pm5.54
    65. pm5.62
    66. pm5.63
    67. niabn
    68. ninba
    69. pm4.43
    70. pm4.82
    71. pm4.83
    72. pclem6
    73. bigolden
    74. pm5.71
    75. pm5.75
    76. ecase2d
    77. ecase2dOLD
    78. ecase3
    79. ecase
    80. ecase3d
    81. ecased
    82. ecase3ad
    83. ecase3adOLD
    84. ccase
    85. ccased
    86. ccase2
    87. 4cases
    88. 4casesdan
    89. cases
    90. dedlem0a
    91. dedlem0b
    92. dedlema
    93. dedlemb
    94. cases2
    95. cases2ALT
    96. dfbi3
    97. pm5.24
    98. 4exmid
    99. consensus
    100. pm4.42
    101. prlem1
    102. prlem2
    103. oplem1
    104. dn1
    105. bianir
    106. jaoi2
    107. jaoi3
    108. ornld
  9. The conditional operator for propositions
    1. wif
    2. df-ifp
    3. dfifp2
    4. dfifp3
    5. dfifp4
    6. dfifp5
    7. dfifp6
    8. dfifp7
    9. ifpdfbi
    10. anifp
    11. ifpor
    12. ifpn
    13. ifptru
    14. ifpfal
    15. ifpid
    16. casesifp
    17. ifpbi123d
    18. ifpbi23d
    19. ifpimpda
    20. 1fpid3
  10. The weak deduction theorem for propositional calculus
    1. elimh
    2. dedt
    3. con3ALT
  11. Abbreviated conjunction and disjunction of three wff's
    1. w3o
    2. w3a
    3. df-3or
    4. df-3an
    5. 3orass
    6. 3orel1
    7. 3orrot
    8. 3orcoma
    9. 3orcomb
    10. 3anass
    11. 3anan12
    12. 3anan32
    13. 3ancoma
    14. 3ancomb
    15. 3anrot
    16. 3anrev
    17. anandi3
    18. anandi3r
    19. 3anidm
    20. 3an4anass
    21. 3ioran
    22. 3ianor
    23. 3anor
    24. 3oran
    25. 3impa
    26. 3imp
    27. 3imp31
    28. 3imp231
    29. 3imp21
    30. 3impb
    31. 3impib
    32. 3impia
    33. 3expa
    34. 3exp
    35. 3expb
    36. 3expia
    37. 3expib
    38. 3com12
    39. 3com13
    40. 3comr
    41. 3com23
    42. 3coml
    43. 3jca
    44. 3jcad
    45. 3adant1
    46. 3adant2
    47. 3adant3
    48. 3ad2ant1
    49. 3ad2ant2
    50. 3ad2ant3
    51. simp1
    52. simp2
    53. simp3
    54. simp1i
    55. simp2i
    56. simp3i
    57. simp1d
    58. simp2d
    59. simp3d
    60. simp1bi
    61. simp2bi
    62. simp3bi
    63. 3simpa
    64. 3simpb
    65. 3simpc
    66. 3anim123i
    67. 3anim1i
    68. 3anim2i
    69. 3anim3i
    70. 3anbi123i
    71. 3orbi123i
    72. 3anbi1i
    73. 3anbi2i
    74. 3anbi3i
    75. syl3an
    76. syl3anb
    77. syl3anbr
    78. syl3an1
    79. syl3an2
    80. syl3an3
    81. 3adantl1
    82. 3adantl2
    83. 3adantl3
    84. 3adantr1
    85. 3adantr2
    86. 3adantr3
    87. ad4ant123
    88. ad4ant124
    89. ad4ant134
    90. ad4ant234
    91. 3adant1l
    92. 3adant1r
    93. 3adant2l
    94. 3adant2r
    95. 3adant3l
    96. 3adant3r
    97. 3adant3r1
    98. 3adant3r2
    99. 3adant3r3
    100. 3ad2antl1
    101. 3ad2antl2
    102. 3ad2antl3
    103. 3ad2antr1
    104. 3ad2antr2
    105. 3ad2antr3
    106. simpl1
    107. simpl2
    108. simpl3
    109. simpr1
    110. simpr2
    111. simpr3
    112. simp1l
    113. simp1r
    114. simp2l
    115. simp2r
    116. simp3l
    117. simp3r
    118. simp11
    119. simp12
    120. simp13
    121. simp21
    122. simp22
    123. simp23
    124. simp31
    125. simp32
    126. simp33
    127. simpll1
    128. simpll2
    129. simpll3
    130. simplr1
    131. simplr2
    132. simplr3
    133. simprl1
    134. simprl2
    135. simprl3
    136. simprr1
    137. simprr2
    138. simprr3
    139. simpl1l
    140. simpl1r
    141. simpl2l
    142. simpl2r
    143. simpl3l
    144. simpl3r
    145. simpr1l
    146. simpr1r
    147. simpr2l
    148. simpr2r
    149. simpr3l
    150. simpr3r
    151. simp1ll
    152. simp1lr
    153. simp1rl
    154. simp1rr
    155. simp2ll
    156. simp2lr
    157. simp2rl
    158. simp2rr
    159. simp3ll
    160. simp3lr
    161. simp3rl
    162. simp3rr
    163. simpl11
    164. simpl12
    165. simpl13
    166. simpl21
    167. simpl22
    168. simpl23
    169. simpl31
    170. simpl32
    171. simpl33
    172. simpr11
    173. simpr12
    174. simpr13
    175. simpr21
    176. simpr22
    177. simpr23
    178. simpr31
    179. simpr32
    180. simpr33
    181. simp1l1
    182. simp1l2
    183. simp1l3
    184. simp1r1
    185. simp1r2
    186. simp1r3
    187. simp2l1
    188. simp2l2
    189. simp2l3
    190. simp2r1
    191. simp2r2
    192. simp2r3
    193. simp3l1
    194. simp3l2
    195. simp3l3
    196. simp3r1
    197. simp3r2
    198. simp3r3
    199. simp11l
    200. simp11r
    201. simp12l
    202. simp12r
    203. simp13l
    204. simp13r
    205. simp21l
    206. simp21r
    207. simp22l
    208. simp22r
    209. simp23l
    210. simp23r
    211. simp31l
    212. simp31r
    213. simp32l
    214. simp32r
    215. simp33l
    216. simp33r
    217. simp111
    218. simp112
    219. simp113
    220. simp121
    221. simp122
    222. simp123
    223. simp131
    224. simp132
    225. simp133
    226. simp211
    227. simp212
    228. simp213
    229. simp221
    230. simp222
    231. simp223
    232. simp231
    233. simp232
    234. simp233
    235. simp311
    236. simp312
    237. simp313
    238. simp321
    239. simp322
    240. simp323
    241. simp331
    242. simp332
    243. simp333
    244. 3anibar
    245. 3mix1
    246. 3mix2
    247. 3mix3
    248. 3mix1i
    249. 3mix2i
    250. 3mix3i
    251. 3mix1d
    252. 3mix2d
    253. 3mix3d
    254. 3pm3.2i
    255. pm3.2an3
    256. mpbir3an
    257. mpbir3and
    258. syl3anbrc
    259. syl21anbrc
    260. 3imp3i2an
    261. ex3
    262. 3imp1
    263. 3impd
    264. 3imp2
    265. 3impdi
    266. 3impdir
    267. 3exp1
    268. 3expd
    269. 3exp2
    270. exp5o
    271. exp516
    272. exp520
    273. 3impexp
    274. 3an1rs
    275. 3anassrs
    276. ad5ant245
    277. ad5ant234
    278. ad5ant235
    279. ad5ant123
    280. ad5ant124
    281. ad5ant125
    282. ad5ant134
    283. ad5ant135
    284. ad5ant145
    285. ad5ant2345
    286. syl3anc
    287. syl13anc
    288. syl31anc
    289. syl112anc
    290. syl121anc
    291. syl211anc
    292. syl23anc
    293. syl32anc
    294. syl122anc
    295. syl212anc
    296. syl221anc
    297. syl113anc
    298. syl131anc
    299. syl311anc
    300. syl33anc
    301. syl222anc
    302. syl123anc
    303. syl132anc
    304. syl213anc
    305. syl231anc
    306. syl312anc
    307. syl321anc
    308. syl133anc
    309. syl313anc
    310. syl331anc
    311. syl223anc
    312. syl232anc
    313. syl322anc
    314. syl233anc
    315. syl323anc
    316. syl332anc
    317. syl333anc
    318. syl3an1b
    319. syl3an2b
    320. syl3an3b
    321. syl3an1br
    322. syl3an2br
    323. syl3an3br
    324. syld3an3
    325. syld3an1
    326. syld3an2
    327. syl3anl1
    328. syl3anl2
    329. syl3anl3
    330. syl3anl
    331. syl3anr1
    332. syl3anr2
    333. syl3anr3
    334. 3anidm12
    335. 3anidm13
    336. 3anidm23
    337. syl2an3an
    338. syl2an23an
    339. 3ori
    340. 3jao
    341. 3jaob
    342. 3jaoi
    343. 3jaod
    344. 3jaoian
    345. 3jaodan
    346. mpjao3dan
    347. 3jaao
    348. syl3an9b
    349. 3orbi123d
    350. 3anbi123d
    351. 3anbi12d
    352. 3anbi13d
    353. 3anbi23d
    354. 3anbi1d
    355. 3anbi2d
    356. 3anbi3d
    357. 3anim123d
    358. 3orim123d
    359. an6
    360. 3an6
    361. 3or6
    362. mp3an1
    363. mp3an2
    364. mp3an3
    365. mp3an12
    366. mp3an13
    367. mp3an23
    368. mp3an1i
    369. mp3anl1
    370. mp3anl2
    371. mp3anl3
    372. mp3anr1
    373. mp3anr2
    374. mp3anr3
    375. mp3an
    376. mpd3an3
    377. mpd3an23
    378. mp3and
    379. mp3an12i
    380. mp3an2i
    381. mp3an3an
    382. mp3an2ani
    383. biimp3a
    384. biimp3ar
    385. 3anandis
    386. 3anandirs
    387. ecase23d
    388. 3ecase
    389. 3bior1fd
    390. 3bior1fand
    391. 3bior2fd
    392. 3biant1d
    393. intn3an1d
    394. intn3an2d
    395. intn3an3d
    396. an3andi
    397. an33rean
    398. 3orel2
    399. 3orel3
    400. 3orel13
    401. 3pm3.2ni
  12. Logical "nand" (Sheffer stroke)
    1. wnan
    2. df-nan
    3. nanan
    4. dfnan2
    5. nanor
    6. nancom
    7. nannan
    8. nanim
    9. nannot
    10. nanbi
    11. nanbi1
    12. nanbi2
    13. nanbi12
    14. nanbi1i
    15. nanbi2i
    16. nanbi12i
    17. nanbi1d
    18. nanbi2d
    19. nanbi12d
    20. nanass
  13. Logical "xor"
    1. wxo
    2. df-xor
    3. xnor
    4. xorcom
    5. xorass
    6. excxor
    7. xor2
    8. xoror
    9. xornan
    10. xornan2
    11. xorneg2
    12. xorneg1
    13. xorneg
    14. xorbi12i
    15. xorbi12d
    16. anxordi
    17. xorexmid
  14. Logical "nor"
    1. wnor
    2. df-nor
    3. norcom
    4. nornot
    5. noran
    6. noror
    7. norasslem1
    8. norasslem2
    9. norasslem3
    10. norass
  15. True and false constants
    1. Universal quantifier for use by df-tru
    2. Equality predicate for use by df-tru
    3. The true constant
    4. The false constant
  16. Truth tables
    1. Implication
    2. Negation
    3. Equivalence
    4. Conjunction
    5. Disjunction
    6. Alternative denial
    7. Exclusive disjunction
    8. Joint denial
  17. Half adder and full adder in propositional calculus
    1. Full adder: sum
    2. Full adder: carry