Metamath Proof Explorer
Table of Contents - 8.1. Categories
- Categories
- ccat
- ccid
- chomf
- ccomf
- df-cat
- df-cid
- df-homf
- df-comf
- iscat
- iscatd
- catidex
- catideu
- cidfval
- cidval
- cidffn
- cidfn
- catidd
- iscatd2
- catidcl
- catlid
- catrid
- catcocl
- catass
- catcone0
- 0catg
- 0cat
- homffval
- fnhomeqhomf
- homfval
- homffn
- homfeq
- homfeqd
- homfeqbas
- homfeqval
- comfffval
- comffval
- comfval
- comfffval2
- comffval2
- comfval2
- comfffn
- comffn
- comfeq
- comfeqd
- comfeqval
- catpropd
- cidpropd
- Opposite category
- coppc
- df-oppc
- oppcval
- oppchomfval
- oppchomfvalOLD
- oppchom
- oppccofval
- oppcco
- oppcbas
- oppcbasOLD
- oppccatid
- oppchomf
- oppcid
- oppccat
- 2oppcbas
- 2oppchomf
- 2oppccomf
- oppchomfpropd
- oppccomfpropd
- oppccatf
- Monomorphisms and epimorphisms
- cmon
- cepi
- df-mon
- df-epi
- monfval
- ismon
- ismon2
- monhom
- moni
- monpropd
- oppcmon
- oppcepi
- isepi
- isepi2
- epihom
- epii
- Sections, inverses, isomorphisms
- csect
- cinv
- ciso
- df-sect
- df-inv
- df-iso
- sectffval
- sectfval
- sectss
- issect
- issect2
- sectcan
- sectco
- isofval
- invffval
- invfval
- isinv
- invss
- invsym
- invsym2
- invfun
- isoval
- inviso1
- inviso2
- invf
- invf1o
- invinv
- invco
- dfiso2
- dfiso3
- inveq
- isofn
- isohom
- isoco
- oppcsect
- oppcsect2
- oppcinv
- oppciso
- sectmon
- monsect
- sectepi
- episect
- sectid
- invid
- idiso
- idinv
- invisoinvl
- invisoinvr
- invcoisoid
- isocoinvid
- rcaninv
- Isomorphic objects
- ccic
- df-cic
- cicfval
- brcic
- cic
- brcici
- cicref
- ciclcl
- cicrcl
- cicsym
- cictr
- cicer
- Subcategories
- cssc
- cresc
- csubc
- df-ssc
- df-resc
- df-subc
- sscrel
- brssc
- sscpwex
- subcrcl
- sscfn1
- sscfn2
- ssclem
- isssc
- ssc1
- ssc2
- sscres
- sscid
- ssctr
- ssceq
- rescval
- rescval2
- rescbas
- rescbasOLD
- reschom
- reschomf
- rescco
- resccoOLD
- rescabs
- rescabsOLD
- rescabs2
- issubc
- issubc2
- 0ssc
- 0subcat
- catsubcat
- subcssc
- subcfn
- subcss1
- subcss2
- subcidcl
- subccocl
- subccatid
- subcid
- subccat
- issubc3
- fullsubc
- fullresc
- resscat
- subsubc
- Functors
- cfunc
- cidfu
- ccofu
- cresf
- df-func
- df-idfu
- df-cofu
- df-resf
- relfunc
- funcrcl
- isfunc
- isfuncd
- funcf1
- funcixp
- funcf2
- funcfn2
- funcid
- funcco
- funcsect
- funcinv
- funciso
- funcoppc
- idfuval
- idfu2nd
- idfu2
- idfu1st
- idfu1
- idfucl
- cofuval
- cofu1st
- cofu1
- cofu2nd
- cofu2
- cofuval2
- cofucl
- cofuass
- cofulid
- cofurid
- resfval
- resfval2
- resf1st
- resf2nd
- funcres
- funcres2b
- funcres2
- wunfunc
- wunfuncOLD
- funcpropd
- funcres2c
- Full & faithful functors
- cful
- cfth
- df-full
- df-fth
- fullfunc
- fthfunc
- relfull
- relfth
- isfull
- isfull2
- fullfo
- fulli
- isfth
- isfth2
- isffth2
- fthf1
- fthi
- ffthf1o
- fullpropd
- fthpropd
- fulloppc
- fthoppc
- ffthoppc
- fthsect
- fthinv
- fthmon
- fthepi
- ffthiso
- fthres2b
- fthres2c
- fthres2
- idffth
- cofull
- cofth
- coffth
- rescfth
- ressffth
- fullres2c
- ffthres2c
- Natural transformations and the functor category
- cnat
- cfuc
- df-nat
- df-fuc
- fnfuc
- natfval
- isnat
- isnat2
- natffn
- natrcl
- nat1st2nd
- natixp
- natcl
- natfn
- nati
- wunnat
- wunnatOLD
- catstr
- fucval
- fuccofval
- fucbas
- fuchom
- fuchomOLD
- fucco
- fuccoval
- fuccocl
- fucidcl
- fuclid
- fucrid
- fucass
- fuccatid
- fuccat
- fucid
- fucsect
- fucinv
- invfuc
- fuciso
- natpropd
- fucpropd
- Initial, terminal and zero objects of a category
- cinito
- ctermo
- czeroo
- df-inito
- df-termo
- df-zeroo
- initofn
- termofn
- zeroofn
- initorcl
- termorcl
- zeroorcl
- initoval
- termoval
- zerooval
- isinito
- istermo
- iszeroo
- isinitoi
- istermoi
- initoid
- termoid
- dfinito2
- dftermo2
- dfinito3
- dftermo3
- initoo
- termoo
- iszeroi
- 2initoinv
- initoeu1
- initoeu1w
- initoeu2lem0
- initoeu2lem1
- initoeu2lem2
- initoeu2
- 2termoinv
- termoeu1
- termoeu1w