Metamath Proof Explorer


Table of Contents - 9.3. Partially ordered sets (posets)

  1. cpo
  2. cplt
  3. club
  4. cglb
  5. cjn
  6. cmee
  7. df-poset
  8. ispos
  9. ispos2
  10. posprs
  11. posi
  12. posref
  13. posasymb
  14. postr
  15. 0pos
  16. isposd
  17. isposi
  18. isposix
  19. pospropd
  20. odupos
  21. oduposb
  22. df-plt
  23. pltfval
  24. pltval
  25. pltle
  26. pltne
  27. pltirr
  28. pleval2i
  29. pleval2
  30. pltnle
  31. pltval3
  32. pltnlt
  33. pltn2lp
  34. plttr
  35. pltletr
  36. plelttr
  37. pospo
  38. df-lub
  39. df-glb
  40. df-join
  41. df-meet
  42. lubfval
  43. lubdm
  44. lubfun
  45. lubeldm
  46. lubelss
  47. lubeu
  48. lubval
  49. lubcl
  50. lubprop
  51. luble
  52. lublecllem
  53. lublecl
  54. lubid
  55. glbfval
  56. glbdm
  57. glbfun
  58. glbeldm
  59. glbelss
  60. glbeu
  61. glbval
  62. glbcl
  63. glbprop
  64. glble
  65. joinfval
  66. joinfval2
  67. joindm
  68. joindef
  69. joinval
  70. joincl
  71. joindmss
  72. joinval2lem
  73. joinval2
  74. joineu
  75. joinlem
  76. lejoin1
  77. lejoin2
  78. joinle
  79. meetfval
  80. meetfval2
  81. meetdm
  82. meetdef
  83. meetval
  84. meetcl
  85. meetdmss
  86. meetval2lem
  87. meetval2
  88. meeteu
  89. meetlem
  90. lemeet1
  91. lemeet2
  92. meetle
  93. joincomALT
  94. joincom
  95. meetcomALT
  96. meetcom
  97. join0
  98. meet0
  99. odulub
  100. odujoin
  101. oduglb
  102. odumeet
  103. poslubmo
  104. posglbmo
  105. poslubd
  106. poslubdg
  107. posglbdg