Metamath Proof Explorer
Table of Contents - 10.7. Subring algebras and ideals
- Subring algebras
- csra
- crglmod
- df-sra
- df-rgmod
- sraval
- sralem
- srabase
- sraaddg
- sramulr
- srasca
- srascaOLD
- sravsca
- sravscaOLD
- sraip
- sratset
- sratopn
- srads
- sraring
- sralmod
- sralmod0
- issubrgd
- rlmfn
- rlmval
- rlmval2
- rlmbas
- rlmplusg
- rlm0
- rlmsub
- rlmmulr
- rlmsca
- rlmsca2
- rlmvsca
- rlmtopn
- rlmds
- rlmlmod
- rlmlvec
- rlmlsm
- rlmvneg
- rlmscaf
- ixpsnbasval
- Left ideals and spans
- clidl
- crsp
- df-lidl
- df-rsp
- lidlval
- rspval
- lidlss
- lidlssbas
- lidlbas
- islidl
- rnglidlmcl
- rngridlmcl
- dflidl2rng
- isridlrng
- lidl0cl
- lidlacl
- lidlnegcl
- lidlsubg
- lidlsubcl
- lidlmcl
- lidl1el
- dflidl2
- lidl0ALT
- rnglidl0
- lidl0
- lidl1ALT
- rnglidl1
- lidl1
- lidlacs
- rspcl
- rspssid
- rsp1
- rsp0
- rspssp
- elrspsn
- mrcrsp
- lidlnz
- drngnidl
- lidlrsppropd
- rnglidlmmgm
- rnglidlmsgrp
- rnglidlrng
- lidlnsg
- Two-sided ideals and quotient rings
- c2idl
- df-2idl
- 2idlval
- isridl
- 2idlelb
- 2idllidld
- 2idlridld
- df2idl2rng
- df2idl2
- ridl0
- ridl1
- 2idl0
- 2idl1
- 2idlss
- 2idlbas
- 2idlelbas
- rng2idlsubrng
- rng2idlnsg
- rng2idl0
- rng2idlsubgsubrng
- rng2idlsubgnsg
- rng2idlsubg0
- 2idlcpblrng
- 2idlcpbl
- qus2idrng
- qus1
- qusring
- qusrhm
- rhmpreimaidl
- kerlidl
- qusmul2idl
- crngridl
- crng2idl
- qusmulrng
- quscrng
- qusmulcrng
- rhmqusnsg
- Condition for a non-unital ring to be unital
- Principal ideal rings. Divisibility in the integers
- clpidl
- clpir
- df-lpidl
- df-lpir
- lpival
- islpidl
- lpi0
- lpi1
- islpir
- lpiss
- islpir2
- lpirring
- drnglpir
- rspsn
- lidldvgen
- lpigen
- Principal ideal domains
- cpid
- df-pid