Metamath Proof Explorer
Table of Contents - 11.3. Abstract multivariate polynomials
- Definition and basic properties
- cmps
- cmvr
- cmpl
- cltb
- copws
- df-psr
- df-mvr
- df-mpl
- df-ltbag
- df-opsr
- reldmpsr
- psrval
- psrvalstr
- psrbag
- psrbagf
- psrbagfOLD
- psrbagfsupp
- psrbagfsuppOLD
- snifpsrbag
- fczpsrbag
- psrbaglesupp
- psrbaglesuppOLD
- psrbaglecl
- psrbagleclOLD
- psrbagaddcl
- psrbagaddclOLD
- psrbagcon
- psrbagconOLD
- psrbaglefi
- psrbaglefiOLD
- psrbagconcl
- psrbagconclOLD
- psrbagconf1o
- psrbagconf1oOLD
- gsumbagdiaglemOLD
- gsumbagdiagOLD
- psrass1lemOLD
- gsumbagdiaglem
- gsumbagdiag
- psrass1lem
- psrbas
- psrelbas
- psrelbasfun
- psrplusg
- psradd
- psraddcl
- psrmulr
- psrmulfval
- psrmulval
- psrmulcllem
- psrmulcl
- psrsca
- psrvscafval
- psrvsca
- psrvscaval
- psrvscacl
- psr0cl
- psr0lid
- psrnegcl
- psrlinv
- psrgrp
- psr0
- psrneg
- psrlmod
- psr1cl
- psrlidm
- psrridm
- psrass1
- psrdi
- psrdir
- psrass23l
- psrcom
- psrass23
- psrring
- psr1
- psrcrng
- psrassa
- resspsrbas
- resspsradd
- resspsrmul
- resspsrvsca
- subrgpsr
- mvrfval
- mvrval
- mvrval2
- mvrid
- mvrf
- mvrf1
- mvrcl2
- reldmmpl
- mplval
- mplbas
- mplelbas
- mplrcl
- mplelsfi
- mplval2
- mplbasss
- mplelf
- mplsubglem
- mpllsslem
- mplsubglem2
- mplsubg
- mpllss
- mplsubrglem
- mplsubrg
- mpl0
- mpladd
- mplneg
- mplmul
- mpl1
- mplsca
- mplvsca2
- mplvsca
- mplvscaval
- mvrcl
- mplgrp
- mpllmod
- mplring
- mpllvec
- mplcrng
- mplassa
- ressmplbas2
- ressmplbas
- ressmpladd
- ressmplmul
- ressmplvsca
- subrgmpl
- subrgmvr
- subrgmvrf
- mplmon
- mplmonmul
- mplcoe1
- mplcoe3
- mplcoe5lem
- mplcoe5
- mplcoe2
- mplbas2
- ltbval
- ltbwe
- reldmopsr
- opsrval
- opsrle
- opsrval2
- opsrbaslem
- opsrbaslemOLD
- opsrbas
- opsrbasOLD
- opsrplusg
- opsrplusgOLD
- opsrmulr
- opsrmulrOLD
- opsrvsca
- opsrvscaOLD
- opsrsca
- opsrscaOLD
- opsrtoslem1
- opsrtoslem2
- opsrtos
- opsrso
- opsrcrng
- opsrassa
- mvrf2
- mplmon2
- psrbag0
- psrbagsn
- mplascl
- mplasclf
- subrgascl
- subrgasclcl
- mplmon2cl
- mplmon2mul
- mplind
- mplcoe4
- Polynomial evaluation
- ces
- cevl
- df-evls
- df-evl
- evlslem4
- psrbagev1
- psrbagev1OLD
- psrbagev2
- psrbagev2OLD
- evlslem2
- evlslem3
- evlslem6
- evlslem1
- evlseu
- reldmevls
- mpfrcl
- evlsval
- evlsval2
- evlsrhm
- evlssca
- evlsvar
- evlsgsumadd
- evlsgsummul
- evlspw
- evlsvarpw
- evlval
- evlrhm
- evlsscasrng
- evlsca
- evlsvarsrng
- evlvar
- mpfconst
- mpfproj
- mpfsubrg
- mpff
- mpfaddcl
- mpfmulcl
- mpfind
- Additional definitions for (multivariate) polynomials
- cslv
- cmhp
- cpsd
- cai
- df-selv
- df-mhp
- df-psd
- df-algind
- selvffval
- selvfval
- selvval
- mhpfval
- mhpval
- ismhp
- ismhp2
- ismhp3
- mhpmpl
- mhpdeg
- mhp0cl
- mhpsclcl
- mhpvarcl
- mhpmulcl
- mhppwdeg
- mhpaddcl
- mhpinvcl
- mhpsubg
- mhpvscacl
- mhplss
- Univariate polynomials
- cps1
- cv1
- cpl1
- cco1
- ctp1
- df-psr1
- df-vr1
- df-ply1
- df-coe1
- df-toply1
- psr1baslem
- psr1val
- psr1crng
- psr1assa
- psr1tos
- psr1bas2
- psr1bas
- vr1val
- vr1cl2
- ply1val
- ply1bas
- ply1lss
- ply1subrg
- ply1crng
- ply1assa
- psr1bascl
- psr1basf
- ply1basf
- ply1bascl
- ply1bascl2
- coe1fval
- coe1fv
- fvcoe1
- coe1fval3
- coe1f2
- coe1fval2
- coe1f
- coe1fvalcl
- coe1sfi
- coe1fsupp
- mptcoe1fsupp
- coe1ae0
- vr1cl
- opsr0
- opsr1
- mplplusg
- mplmulr
- psr1plusg
- psr1vsca
- psr1mulr
- ply1plusg
- ply1vsca
- ply1mulr
- ressply1bas2
- ressply1bas
- ressply1add
- ressply1mul
- ressply1vsca
- subrgply1
- gsumply1subr
- psrbaspropd
- psrplusgpropd
- mplbaspropd
- psropprmul
- ply1opprmul
- 00ply1bas
- ply1basfvi
- ply1plusgfvi
- ply1baspropd
- ply1plusgpropd
- opsrring
- opsrlmod
- psr1ring
- ply1ring
- psr1lmod
- psr1sca
- psr1sca2
- ply1lmod
- ply1sca
- ply1sca2
- ply1mpl0
- ply10s0
- ply1mpl1
- ply1ascl
- subrg1ascl
- subrg1asclcl
- subrgvr1
- subrgvr1cl
- coe1z
- coe1add
- coe1addfv
- coe1subfv
- coe1mul2lem1
- coe1mul2lem2
- coe1mul2
- coe1mul
- ply1moncl
- ply1tmcl
- coe1tm
- coe1tmfv1
- coe1tmfv2
- coe1tmmul2
- coe1tmmul
- coe1tmmul2fv
- coe1pwmul
- coe1pwmulfv
- ply1scltm
- coe1sclmul
- coe1sclmulfv
- coe1sclmul2
- ply1sclf
- ply1sclcl
- coe1scl
- ply1sclid
- ply1sclf1
- ply1scl0
- ply1scln0
- ply1scl1
- ply1idvr1
- cply1mul
- ply1coefsupp
- ply1coe
- eqcoe1ply1eq
- ply1coe1eq
- cply1coe0
- cply1coe0bi
- coe1fzgsumdlem
- coe1fzgsumd
- gsumsmonply1
- gsummoncoe1
- gsumply1eq
- lply1binom
- lply1binomsc
- Univariate polynomial evaluation
- ces1
- ce1
- df-evls1
- df-evl1
- reldmevls1
- ply1frcl
- evls1fval
- evls1val
- evls1rhmlem
- evls1rhm
- evls1sca
- evls1gsumadd
- evls1gsummul
- evls1pw
- evls1varpw
- evl1fval
- evl1val
- evl1fval1lem
- evl1fval1
- evl1rhm
- fveval1fvcl
- evl1sca
- evl1scad
- evl1var
- evl1vard
- evls1var
- evls1scasrng
- evls1varsrng
- evl1addd
- evl1subd
- evl1muld
- evl1vsd
- evl1expd
- pf1const
- pf1id
- pf1subrg
- pf1rcl
- pf1f
- mpfpf1
- pf1mpf
- pf1addcl
- pf1mulcl
- pf1ind
- evl1gsumdlem
- evl1gsumd
- evl1gsumadd
- evl1gsumaddval
- evl1gsummul
- evl1varpw
- evl1varpwval
- evl1scvarpw
- evl1scvarpwval
- evl1gsummon