Metamath Proof Explorer


Table of Contents - 11.3. Abstract multivariate polynomials

  1. Definition and basic properties
    1. cmps
    2. cmvr
    3. cmpl
    4. cltb
    5. copws
    6. df-psr
    7. df-mvr
    8. df-mpl
    9. df-ltbag
    10. df-opsr
    11. reldmpsr
    12. psrval
    13. psrvalstr
    14. psrbag
    15. psrbagf
    16. psrbagfOLD
    17. psrbagfsupp
    18. psrbagfsuppOLD
    19. snifpsrbag
    20. fczpsrbag
    21. psrbaglesupp
    22. psrbaglesuppOLD
    23. psrbaglecl
    24. psrbagleclOLD
    25. psrbagaddcl
    26. psrbagaddclOLD
    27. psrbagcon
    28. psrbagconOLD
    29. psrbaglefi
    30. psrbaglefiOLD
    31. psrbagconcl
    32. psrbagconclOLD
    33. psrbagconf1o
    34. psrbagconf1oOLD
    35. gsumbagdiaglemOLD
    36. gsumbagdiagOLD
    37. psrass1lemOLD
    38. gsumbagdiaglem
    39. gsumbagdiag
    40. psrass1lem
    41. psrbas
    42. psrelbas
    43. psrelbasfun
    44. psrplusg
    45. psradd
    46. psraddcl
    47. psrmulr
    48. psrmulfval
    49. psrmulval
    50. psrmulcllem
    51. psrmulcl
    52. psrsca
    53. psrvscafval
    54. psrvsca
    55. psrvscaval
    56. psrvscacl
    57. psr0cl
    58. psr0lid
    59. psrnegcl
    60. psrlinv
    61. psrgrp
    62. psr0
    63. psrneg
    64. psrlmod
    65. psr1cl
    66. psrlidm
    67. psrridm
    68. psrass1
    69. psrdi
    70. psrdir
    71. psrass23l
    72. psrcom
    73. psrass23
    74. psrring
    75. psr1
    76. psrcrng
    77. psrassa
    78. resspsrbas
    79. resspsradd
    80. resspsrmul
    81. resspsrvsca
    82. subrgpsr
    83. mvrfval
    84. mvrval
    85. mvrval2
    86. mvrid
    87. mvrf
    88. mvrf1
    89. mvrcl2
    90. reldmmpl
    91. mplval
    92. mplbas
    93. mplelbas
    94. mplrcl
    95. mplelsfi
    96. mplval2
    97. mplbasss
    98. mplelf
    99. mplsubglem
    100. mpllsslem
    101. mplsubglem2
    102. mplsubg
    103. mpllss
    104. mplsubrglem
    105. mplsubrg
    106. mpl0
    107. mpladd
    108. mplneg
    109. mplmul
    110. mpl1
    111. mplsca
    112. mplvsca2
    113. mplvsca
    114. mplvscaval
    115. mvrcl
    116. mplgrp
    117. mpllmod
    118. mplring
    119. mpllvec
    120. mplcrng
    121. mplassa
    122. ressmplbas2
    123. ressmplbas
    124. ressmpladd
    125. ressmplmul
    126. ressmplvsca
    127. subrgmpl
    128. subrgmvr
    129. subrgmvrf
    130. mplmon
    131. mplmonmul
    132. mplcoe1
    133. mplcoe3
    134. mplcoe5lem
    135. mplcoe5
    136. mplcoe2
    137. mplbas2
    138. ltbval
    139. ltbwe
    140. reldmopsr
    141. opsrval
    142. opsrle
    143. opsrval2
    144. opsrbaslem
    145. opsrbaslemOLD
    146. opsrbas
    147. opsrbasOLD
    148. opsrplusg
    149. opsrplusgOLD
    150. opsrmulr
    151. opsrmulrOLD
    152. opsrvsca
    153. opsrvscaOLD
    154. opsrsca
    155. opsrscaOLD
    156. opsrtoslem1
    157. opsrtoslem2
    158. opsrtos
    159. opsrso
    160. opsrcrng
    161. opsrassa
    162. mvrf2
    163. mplmon2
    164. psrbag0
    165. psrbagsn
    166. mplascl
    167. mplasclf
    168. subrgascl
    169. subrgasclcl
    170. mplmon2cl
    171. mplmon2mul
    172. mplind
    173. mplcoe4
  2. Polynomial evaluation
    1. ces
    2. cevl
    3. df-evls
    4. df-evl
    5. evlslem4
    6. psrbagev1
    7. psrbagev1OLD
    8. psrbagev2
    9. psrbagev2OLD
    10. evlslem2
    11. evlslem3
    12. evlslem6
    13. evlslem1
    14. evlseu
    15. reldmevls
    16. mpfrcl
    17. evlsval
    18. evlsval2
    19. evlsrhm
    20. evlssca
    21. evlsvar
    22. evlsgsumadd
    23. evlsgsummul
    24. evlspw
    25. evlsvarpw
    26. evlval
    27. evlrhm
    28. evlsscasrng
    29. evlsca
    30. evlsvarsrng
    31. evlvar
    32. mpfconst
    33. mpfproj
    34. mpfsubrg
    35. mpff
    36. mpfaddcl
    37. mpfmulcl
    38. mpfind
  3. Additional definitions for (multivariate) polynomials
    1. cslv
    2. cmhp
    3. cpsd
    4. cai
    5. df-selv
    6. df-mhp
    7. df-psd
    8. df-algind
    9. selvffval
    10. selvfval
    11. selvval
    12. mhpfval
    13. mhpval
    14. ismhp
    15. ismhp2
    16. ismhp3
    17. mhpmpl
    18. mhpdeg
    19. mhp0cl
    20. mhpsclcl
    21. mhpvarcl
    22. mhpmulcl
    23. mhppwdeg
    24. mhpaddcl
    25. mhpinvcl
    26. mhpsubg
    27. mhpvscacl
    28. mhplss
  4. Univariate polynomials
    1. cps1
    2. cv1
    3. cpl1
    4. cco1
    5. ctp1
    6. df-psr1
    7. df-vr1
    8. df-ply1
    9. df-coe1
    10. df-toply1
    11. psr1baslem
    12. psr1val
    13. psr1crng
    14. psr1assa
    15. psr1tos
    16. psr1bas2
    17. psr1bas
    18. vr1val
    19. vr1cl2
    20. ply1val
    21. ply1bas
    22. ply1lss
    23. ply1subrg
    24. ply1crng
    25. ply1assa
    26. psr1bascl
    27. psr1basf
    28. ply1basf
    29. ply1bascl
    30. ply1bascl2
    31. coe1fval
    32. coe1fv
    33. fvcoe1
    34. coe1fval3
    35. coe1f2
    36. coe1fval2
    37. coe1f
    38. coe1fvalcl
    39. coe1sfi
    40. coe1fsupp
    41. mptcoe1fsupp
    42. coe1ae0
    43. vr1cl
    44. opsr0
    45. opsr1
    46. mplplusg
    47. mplmulr
    48. psr1plusg
    49. psr1vsca
    50. psr1mulr
    51. ply1plusg
    52. ply1vsca
    53. ply1mulr
    54. ressply1bas2
    55. ressply1bas
    56. ressply1add
    57. ressply1mul
    58. ressply1vsca
    59. subrgply1
    60. gsumply1subr
    61. psrbaspropd
    62. psrplusgpropd
    63. mplbaspropd
    64. psropprmul
    65. ply1opprmul
    66. 00ply1bas
    67. ply1basfvi
    68. ply1plusgfvi
    69. ply1baspropd
    70. ply1plusgpropd
    71. opsrring
    72. opsrlmod
    73. psr1ring
    74. ply1ring
    75. psr1lmod
    76. psr1sca
    77. psr1sca2
    78. ply1lmod
    79. ply1sca
    80. ply1sca2
    81. ply1mpl0
    82. ply10s0
    83. ply1mpl1
    84. ply1ascl
    85. subrg1ascl
    86. subrg1asclcl
    87. subrgvr1
    88. subrgvr1cl
    89. coe1z
    90. coe1add
    91. coe1addfv
    92. coe1subfv
    93. coe1mul2lem1
    94. coe1mul2lem2
    95. coe1mul2
    96. coe1mul
    97. ply1moncl
    98. ply1tmcl
    99. coe1tm
    100. coe1tmfv1
    101. coe1tmfv2
    102. coe1tmmul2
    103. coe1tmmul
    104. coe1tmmul2fv
    105. coe1pwmul
    106. coe1pwmulfv
    107. ply1scltm
    108. coe1sclmul
    109. coe1sclmulfv
    110. coe1sclmul2
    111. ply1sclf
    112. ply1sclcl
    113. coe1scl
    114. ply1sclid
    115. ply1sclf1
    116. ply1scl0
    117. ply1scln0
    118. ply1scl1
    119. ply1idvr1
    120. cply1mul
    121. ply1coefsupp
    122. ply1coe
    123. eqcoe1ply1eq
    124. ply1coe1eq
    125. cply1coe0
    126. cply1coe0bi
    127. coe1fzgsumdlem
    128. coe1fzgsumd
    129. gsumsmonply1
    130. gsummoncoe1
    131. gsumply1eq
    132. lply1binom
    133. lply1binomsc
  5. Univariate polynomial evaluation
    1. ces1
    2. ce1
    3. df-evls1
    4. df-evl1
    5. reldmevls1
    6. ply1frcl
    7. evls1fval
    8. evls1val
    9. evls1rhmlem
    10. evls1rhm
    11. evls1sca
    12. evls1gsumadd
    13. evls1gsummul
    14. evls1pw
    15. evls1varpw
    16. evl1fval
    17. evl1val
    18. evl1fval1lem
    19. evl1fval1
    20. evl1rhm
    21. fveval1fvcl
    22. evl1sca
    23. evl1scad
    24. evl1var
    25. evl1vard
    26. evls1var
    27. evls1scasrng
    28. evls1varsrng
    29. evl1addd
    30. evl1subd
    31. evl1muld
    32. evl1vsd
    33. evl1expd
    34. pf1const
    35. pf1id
    36. pf1subrg
    37. pf1rcl
    38. pf1f
    39. mpfpf1
    40. pf1mpf
    41. pf1addcl
    42. pf1mulcl
    43. pf1ind
    44. evl1gsumdlem
    45. evl1gsumd
    46. evl1gsumadd
    47. evl1gsumaddval
    48. evl1gsummul
    49. evl1varpw
    50. evl1varpwval
    51. evl1scvarpw
    52. evl1scvarpwval
    53. evl1gsummon