Metamath Proof Explorer


Table of Contents - 1.2.6. Logical conjunction

This section defines conjunction of two formulas, denoted by infix "" and read "and". It is defined in terms of implication and negation, which is possible in classical logic (but not in intuitionistic logic: see iset.mm).

After the definition, we briefly introduce conversion of simple expressions to and from conjunction. Two simple operations called importation (imp) and exportation (ex) follow. In the propositions-as-types interpretation, they correspond to uncurrying and currying respectively. They are foundational for this section. Most of the theorems proved here trace back to them, mostly indirectly, in a layered fashion, where more complex expressions are built from simpler ones. Here are some of these successive layers: importation and exportation, commutativity and associativity laws, adding antecedents and simplifying, conjunction of consequents, syllogisms, etc.

As indicated in the "note on definitions" in the section comment for logical equivalence, some theorems containing only implication, negation and conjunction are placed in the section after disjunction since theirs proofs use disjunction (although this is not required since definitions are conservative, see said section comment).

  1. wa
  2. df-an
  3. pm4.63
  4. pm4.67
  5. imnan
  6. imnani
  7. iman
  8. pm3.24
  9. annim
  10. pm4.61
  11. pm4.65
  12. imp
  13. impcom
  14. con3dimp
  15. mpnanrd
  16. impd
  17. impcomd
  18. ex
  19. expcom
  20. expdcom
  21. expd
  22. expcomd
  23. imp31
  24. imp32
  25. exp31
  26. exp32
  27. imp4b
  28. imp4a
  29. imp4c
  30. imp4d
  31. imp41
  32. imp42
  33. imp43
  34. imp44
  35. imp45
  36. exp4b
  37. exp4a
  38. exp4c
  39. exp4d
  40. exp41
  41. exp42
  42. exp43
  43. exp44
  44. exp45
  45. imp5d
  46. imp5a
  47. imp5g
  48. imp55
  49. imp511
  50. exp5c
  51. exp5j
  52. exp5l
  53. exp53
  54. pm3.3
  55. pm3.31
  56. impexp
  57. impancom
  58. expdimp
  59. expimpd
  60. impr
  61. impl
  62. expr
  63. expl
  64. ancoms
  65. pm3.22
  66. ancom
  67. ancomd
  68. biancomi
  69. biancomd
  70. ancomst
  71. ancomsd
  72. anasss
  73. anassrs
  74. anass
  75. pm3.2
  76. pm3.2i
  77. pm3.21
  78. pm3.43i
  79. pm3.43
  80. dfbi2
  81. dfbi
  82. biimpa
  83. biimpar
  84. biimpac
  85. biimparc
  86. adantr
  87. adantl
  88. simpl
  89. simpli
  90. simpr
  91. simpri
  92. intnan
  93. intnanr
  94. intnand
  95. intnanrd
  96. adantld
  97. adantrd
  98. pm3.41
  99. pm3.42
  100. simpld
  101. simprd
  102. simprbi
  103. simplbi
  104. simprbda
  105. simplbda
  106. simplbi2
  107. simplbi2comt
  108. simplbi2com
  109. simpl2im
  110. simplbiim
  111. impel
  112. mpan9
  113. sylan9
  114. sylan9r
  115. sylan9bb
  116. sylan9bbr
  117. jca
  118. jcad
  119. jca2
  120. jca31
  121. jca32
  122. jcai
  123. jcab
  124. pm4.76
  125. jctil
  126. jctir
  127. jccir
  128. jccil
  129. jctl
  130. jctr
  131. jctild
  132. jctird
  133. iba
  134. ibar
  135. biantru
  136. biantrur
  137. biantrud
  138. biantrurd
  139. bianfi
  140. bianfd
  141. baib
  142. baibr
  143. rbaibr
  144. rbaib
  145. baibd
  146. rbaibd
  147. bianabs
  148. pm5.44
  149. pm5.42
  150. ancl
  151. anclb
  152. ancr
  153. ancrb
  154. ancli
  155. ancri
  156. ancld
  157. ancrd
  158. impac
  159. anc2l
  160. anc2r
  161. anc2li
  162. anc2ri
  163. pm4.71
  164. pm4.71r
  165. pm4.71i
  166. pm4.71ri
  167. pm4.71d
  168. pm4.71rd
  169. pm4.24
  170. anidm
  171. anidmdbi
  172. anidms
  173. imdistan
  174. imdistani
  175. imdistanri
  176. imdistand
  177. imdistanda
  178. pm5.3
  179. pm5.32
  180. pm5.32i
  181. pm5.32ri
  182. pm5.32d
  183. pm5.32rd
  184. pm5.32da
  185. sylan
  186. sylanb
  187. sylanbr
  188. sylanbrc
  189. syl2anc
  190. syl2anc2
  191. sylancl
  192. sylancr
  193. sylancom
  194. sylanblc
  195. sylanblrc
  196. syldan
  197. sylbida
  198. sylan2
  199. sylan2b
  200. sylan2br
  201. syl2an
  202. syl2anr
  203. syl2anb
  204. syl2anbr
  205. sylancb
  206. sylancbr
  207. syldanl
  208. syland
  209. sylani
  210. sylan2d
  211. sylan2i
  212. syl2ani
  213. syl2and
  214. anim12d
  215. anim12d1
  216. anim1d
  217. anim2d
  218. anim12i
  219. anim12ci
  220. anim1i
  221. anim1ci
  222. anim2i
  223. anim12ii
  224. anim12dan
  225. im2anan9
  226. im2anan9r
  227. pm3.45
  228. anbi2i
  229. anbi1i
  230. anbi2ci
  231. anbi1ci
  232. anbi12i
  233. anbi12ci
  234. anbi2d
  235. anbi1d
  236. anbi12d
  237. anbi1
  238. anbi2
  239. anbi1cd
  240. an2anr
  241. pm4.38
  242. bi2anan9
  243. bi2anan9r
  244. bi2bian9
  245. bianass
  246. bianassc
  247. an21
  248. an12
  249. an32
  250. an13
  251. an31
  252. an12s
  253. ancom2s
  254. an13s
  255. an32s
  256. ancom1s
  257. an31s
  258. anass1rs
  259. an4
  260. an42
  261. an43
  262. an3
  263. an4s
  264. an42s
  265. anabs1
  266. anabs5
  267. anabs7
  268. anabsan
  269. anabss1
  270. anabss4
  271. anabss5
  272. anabsi5
  273. anabsi6
  274. anabsi7
  275. anabsi8
  276. anabss7
  277. anabsan2
  278. anabss3
  279. anandi
  280. anandir
  281. anandis
  282. anandirs
  283. sylanl1
  284. sylanl2
  285. sylanr1
  286. sylanr2
  287. syl6an
  288. syl2an2r
  289. syl2an2
  290. mpdan
  291. mpancom
  292. mpidan
  293. mpan
  294. mpan2
  295. mp2an
  296. mp4an
  297. mpan2d
  298. mpand
  299. mpani
  300. mpan2i
  301. mp2ani
  302. mp2and
  303. mpanl1
  304. mpanl2
  305. mpanl12
  306. mpanr1
  307. mpanr2
  308. mpanr12
  309. mpanlr1
  310. mpbirand
  311. mpbiran2d
  312. mpbiran
  313. mpbiran2
  314. mpbir2an
  315. mpbi2and
  316. mpbir2and
  317. adantll
  318. adantlr
  319. adantrl
  320. adantrr
  321. adantlll
  322. adantllr
  323. adantlrl
  324. adantlrr
  325. adantrll
  326. adantrlr
  327. adantrrl
  328. adantrrr
  329. ad2antrr
  330. ad2antlr
  331. ad2antrl
  332. ad2antll
  333. ad3antrrr
  334. ad3antlr
  335. ad4antr
  336. ad4antlr
  337. ad5antr
  338. ad5antlr
  339. ad6antr
  340. ad6antlr
  341. ad7antr
  342. ad7antlr
  343. ad8antr
  344. ad8antlr
  345. ad9antr
  346. ad9antlr
  347. ad10antr
  348. ad10antlr
  349. ad2ant2l
  350. ad2ant2r
  351. ad2ant2lr
  352. ad2ant2rl
  353. adantl3r
  354. ad4ant13
  355. ad4ant14
  356. ad4ant23
  357. ad4ant24
  358. adantl4r
  359. ad5ant12
  360. ad5ant13
  361. ad5ant14
  362. ad5ant15
  363. ad5ant23
  364. ad5ant24
  365. ad5ant25
  366. adantl5r
  367. adantl6r
  368. pm3.33
  369. pm3.34
  370. simpll
  371. simplld
  372. simplr
  373. simplrd
  374. simprl
  375. simprld
  376. simprr
  377. simprrd
  378. simplll
  379. simpllr
  380. simplrl
  381. simplrr
  382. simprll
  383. simprlr
  384. simprrl
  385. simprrr
  386. simp-4l
  387. simp-4r
  388. simp-5l
  389. simp-5r
  390. simp-6l
  391. simp-6r
  392. simp-7l
  393. simp-7r
  394. simp-8l
  395. simp-8r
  396. simp-9l
  397. simp-9r
  398. simp-10l
  399. simp-10r
  400. simp-11l
  401. simp-11r
  402. pm2.01da
  403. pm2.18da
  404. impbida
  405. pm5.21nd
  406. pm3.35
  407. pm5.74da
  408. bitr
  409. biantr
  410. pm4.14
  411. pm3.37
  412. anim12
  413. pm3.4
  414. exbiri
  415. pm2.61ian
  416. pm2.61dan
  417. pm2.61ddan
  418. pm2.61dda
  419. mtand
  420. pm2.65da
  421. condan
  422. biadan
  423. biadani
  424. biadaniALT
  425. biadanii
  426. biadanid
  427. pm5.1
  428. pm5.21
  429. pm5.35
  430. abai
  431. pm4.45im
  432. impimprbi
  433. nan
  434. pm5.31
  435. pm5.31r
  436. pm4.15
  437. pm5.36
  438. annotanannot
  439. pm5.33
  440. syl12anc
  441. syl21anc
  442. syl22anc
  443. syl1111anc
  444. syldbl2
  445. mpsyl4anc
  446. pm4.87
  447. bimsc1
  448. a2and
  449. animpimp2impd