Metamath Proof Explorer
Table of Contents - 19.5. Properties of Hilbert subspaces
- Orthomodular law
- omlsilem
- omlsii
- omlsi
- ococi
- ococ
- dfch2
- ococin
- hsupval2
- chsupval2
- sshjval2
- chsupid
- chsupsn
- shlub
- shlubi
- Projectors (cont.)
- pjhtheu2
- pjcli
- pjhcli
- pjpjpre
- axpjpj
- pjclii
- pjhclii
- pjpj0i
- pjpji
- pjpjhth
- pjpjhthi
- pjop
- pjpo
- pjopi
- pjpoi
- pjoc1i
- pjchi
- pjoccl
- pjoc1
- pjomli
- pjoml
- pjococi
- pjoc2i
- pjoc2
- Hilbert lattice operations
- sh0le
- ch0le
- shle0
- chle0
- chnlen0
- ch0pss
- orthin
- ssjo
- shne0i
- shs0i
- shs00i
- ch0lei
- chle0i
- chne0i
- chocini
- chj0i
- chm1i
- chjcli
- chsleji
- chseli
- chincli
- chsscon3i
- chsscon1i
- chsscon2i
- chcon2i
- chcon1i
- chcon3i
- chunssji
- chjcomi
- chub1i
- chub2i
- chlubi
- chlubii
- chlej1i
- chlej2i
- chlej12i
- chlejb1i
- chdmm1i
- chdmm2i
- chdmm3i
- chdmm4i
- chdmj1i
- chdmj2i
- chdmj3i
- chdmj4i
- chnlei
- chjassi
- chj00i
- chjoi
- chj1i
- chm0i
- chm0
- shjshsi
- shjshseli
- chne0
- chocin
- chssoc
- chj0
- chslej
- chincl
- chsscon3
- chsscon1
- chsscon2
- chpsscon3
- chpsscon1
- chpsscon2
- chjcom
- chub1
- chub2
- chlub
- chlej1
- chlej2
- chlejb1
- chlejb2
- chnle
- chjo
- chabs1
- chabs2
- chabs1i
- chabs2i
- chjidm
- chjidmi
- chj12i
- chj4i
- chjjdiri
- chdmm1
- chdmm2
- chdmm3
- chdmm4
- chdmj1
- chdmj2
- chdmj3
- chdmj4
- chjass
- chj12
- chj4
- ledii
- lediri
- lejdii
- lejdiri
- ledi
- Span (cont.) and one-dimensional subspaces
- spansn0
- span0
- elspani
- spanuni
- spanun
- sshhococi
- hne0
- chsup0
- h1deoi
- h1dei
- h1did
- h1dn0
- h1de2i
- h1de2bi
- h1de2ctlem
- h1de2ci
- spansni
- elspansni
- spansn
- spansnch
- spansnsh
- spansnchi
- spansnid
- spansnmul
- elspansncl
- elspansn
- elspansn2
- spansncol
- spansneleqi
- spansneleq
- spansnss
- elspansn3
- elspansn4
- elspansn5
- spansnss2
- normcan
- pjspansn
- spansnpji
- spanunsni
- spanpr
- h1datomi
- h1datom
- Commutes relation for Hilbert lattice elements
- df-cm
- cmbr
- pjoml2i
- pjoml3i
- pjoml4i
- pjoml5i
- pjoml6i
- cmbri
- cmcmlem
- cmcmi
- cmcm2i
- cmcm3i
- cmcm4i
- cmbr2i
- cmcmii
- cmcm2ii
- cmcm3ii
- cmbr3i
- cmbr4i
- lecmi
- lecmii
- cmj1i
- cmj2i
- cmm1i
- cmm2i
- cmbr3
- cm0
- cmidi
- pjoml2
- pjoml3
- pjoml5
- cmcm
- cmcm3
- cmcm2
- lecm
- Foulis-Holland theorem
- fh1
- fh2
- cm2j
- fh1i
- fh2i
- fh3i
- fh4i
- cm2ji
- cm2mi
- Quantum Logic Explorer axioms
- qlax1i
- qlax2i
- qlax3i
- qlax4i
- qlax5i
- qlaxr1i
- qlaxr2i
- qlaxr4i
- qlaxr5i
- qlaxr3i
- Orthogonal subspaces
- chscllem1
- chscllem2
- chscllem3
- chscllem4
- chscl
- osumi
- osumcori
- osumcor2i
- osum
- spansnji
- spansnj
- spansnscl
- sumspansn
- spansnm0i
- nonbooli
- spansncvi
- spansncv
- Orthoarguesian laws 5OA and 3OA
- 5oalem1
- 5oalem2
- 5oalem3
- 5oalem4
- 5oalem5
- 5oalem6
- 5oalem7
- 5oai
- 3oalem1
- 3oalem2
- 3oalem3
- 3oalem4
- 3oalem5
- 3oalem6
- 3oai
- Projectors (cont.)
- pjorthi
- pjch1
- pjo
- pjcompi
- pjidmi
- pjadjii
- pjaddii
- pjinormii
- pjmulii
- pjsubii
- pjsslem
- pjss2i
- pjssmii
- pjssge0ii
- pjdifnormii
- pjcji
- pjadji
- pjaddi
- pjinormi
- pjsubi
- pjmuli
- pjige0i
- pjige0
- pjcjt2
- pj0i
- pjch
- pjid
- pjvec
- pjocvec
- pjocini
- pjini
- pjjsi
- pjfni
- pjrni
- pjfoi
- pjfi
- pjvi
- pjhfo
- pjrn
- pjhf
- pjfn
- pjsumi
- pj11i
- pjdsi
- pjds3i
- pj11
- pjmfn
- pjmf1
- pjoi0
- pjoi0i
- pjopythi
- pjopyth
- pjnormi
- pjpythi
- pjneli
- pjnorm
- pjpyth
- pjnel
- pjnorm2
- Mayet's equation E_3
- mayete3i
- mayetes3i