Metamath Proof Explorer


Theorem trljat1

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. TODO: shorten with atmod3i1 ? (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trljat.l = ( le ‘ 𝐾 )
trljat.j = ( join ‘ 𝐾 )
trljat.a 𝐴 = ( Atoms ‘ 𝐾 )
trljat.h 𝐻 = ( LHyp ‘ 𝐾 )
trljat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trljat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trljat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 trljat.l = ( le ‘ 𝐾 )
2 trljat.j = ( join ‘ 𝐾 )
3 trljat.a 𝐴 = ( Atoms ‘ 𝐾 )
4 trljat.h 𝐻 = ( LHyp ‘ 𝐾 )
5 trljat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 trljat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
8 1 2 7 3 4 5 6 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
9 8 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑅𝐹 ) 𝑃 ) = ( ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑃 ) )
10 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐾 ∈ HL )
11 10 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐾 ∈ Lat )
12 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃𝐴 )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
15 12 14 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
16 13 4 5 6 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) )
17 16 3adant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) )
18 13 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( ( 𝑅𝐹 ) 𝑃 ) )
19 11 15 17 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( ( 𝑅𝐹 ) 𝑃 ) )
20 13 4 5 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
21 15 20 syld3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
22 13 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
23 11 15 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
24 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑊𝐻 )
25 13 4 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
26 24 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
27 13 1 2 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ( 𝑃 ( 𝐹𝑃 ) ) )
28 11 15 21 27 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃 ( 𝑃 ( 𝐹𝑃 ) ) )
29 13 1 2 7 3 atmod2i1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ( 𝑃 ( 𝐹𝑃 ) ) ) → ( ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑃 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 𝑊 𝑃 ) ) )
30 10 12 23 26 28 29 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑃 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 𝑊 𝑃 ) ) )
31 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
32 1 2 31 3 4 lhpjat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑊 𝑃 ) = ( 1. ‘ 𝐾 ) )
33 32 3adant2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑊 𝑃 ) = ( 1. ‘ 𝐾 ) )
34 33 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 𝑊 𝑃 ) ) = ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) )
35 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
36 10 35 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐾 ∈ OL )
37 13 7 31 olm11 ( ( 𝐾 ∈ OL ∧ ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
38 36 23 37 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
39 30 34 38 3eqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝐹𝑃 ) ) = ( ( ( 𝑃 ( 𝐹𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑃 ) )
40 9 19 39 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )