Metamath Proof Explorer


Theorem tz7.7

Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)

Ref Expression
Assertion tz7.7 ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 ↔ ( 𝐵𝐴𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐴 → Tr 𝐴 )
2 ordfr ( Ord 𝐴 → E Fr 𝐴 )
3 tz7.2 ( ( Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴 ) → ( 𝐵𝐴𝐵𝐴 ) )
4 3 3exp ( Tr 𝐴 → ( E Fr 𝐴 → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) ) )
5 1 2 4 sylc ( Ord 𝐴 → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) )
6 5 adantr ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) )
7 pssdifn0 ( ( 𝐵𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≠ ∅ )
8 difss ( 𝐴𝐵 ) ⊆ 𝐴
9 tz7.5 ( ( Ord 𝐴 ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴𝐵 ) ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ )
10 8 9 mp3an2 ( ( Ord 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴𝐵 ) ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ )
11 eldifi ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐴 )
12 trss ( Tr 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
13 difin0ss ( ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → ( 𝑥𝐴𝑥𝐵 ) )
14 13 com12 ( 𝑥𝐴 → ( ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥𝐵 ) )
15 11 12 14 syl56 ( Tr 𝐴 → ( 𝑥 ∈ ( 𝐴𝐵 ) → ( ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥𝐵 ) ) )
16 1 15 syl ( Ord 𝐴 → ( 𝑥 ∈ ( 𝐴𝐵 ) → ( ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥𝐵 ) ) )
17 16 ad2antrr ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → ( ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥𝐵 ) ) )
18 17 imp32 ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥𝐵 )
19 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐵𝑥𝐵 ) )
20 19 biimpcd ( 𝑦𝐵 → ( 𝑦 = 𝑥𝑥𝐵 ) )
21 eldifn ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ 𝑥𝐵 )
22 20 21 nsyli ( 𝑦𝐵 → ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ 𝑦 = 𝑥 ) )
23 22 imp ( ( 𝑦𝐵𝑥 ∈ ( 𝐴𝐵 ) ) → ¬ 𝑦 = 𝑥 )
24 23 adantll ( ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) → ¬ 𝑦 = 𝑥 )
25 24 adantl ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → ¬ 𝑦 = 𝑥 )
26 trel ( Tr 𝐵 → ( ( 𝑥𝑦𝑦𝐵 ) → 𝑥𝐵 ) )
27 26 expcomd ( Tr 𝐵 → ( 𝑦𝐵 → ( 𝑥𝑦𝑥𝐵 ) ) )
28 27 imp ( ( Tr 𝐵𝑦𝐵 ) → ( 𝑥𝑦𝑥𝐵 ) )
29 28 21 nsyli ( ( Tr 𝐵𝑦𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ 𝑥𝑦 ) )
30 29 ex ( Tr 𝐵 → ( 𝑦𝐵 → ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ 𝑥𝑦 ) ) )
31 30 adantld ( Tr 𝐵 → ( ( 𝐵𝐴𝑦𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) → ¬ 𝑥𝑦 ) ) )
32 31 imp32 ( ( Tr 𝐵 ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → ¬ 𝑥𝑦 )
33 32 adantll ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → ¬ 𝑥𝑦 )
34 ordwe ( Ord 𝐴 → E We 𝐴 )
35 ssel2 ( ( 𝐵𝐴𝑦𝐵 ) → 𝑦𝐴 )
36 35 11 anim12i ( ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) → ( 𝑦𝐴𝑥𝐴 ) )
37 wecmpep ( ( E We 𝐴 ∧ ( 𝑦𝐴𝑥𝐴 ) ) → ( 𝑦𝑥𝑦 = 𝑥𝑥𝑦 ) )
38 34 36 37 syl2an ( ( Ord 𝐴 ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → ( 𝑦𝑥𝑦 = 𝑥𝑥𝑦 ) )
39 38 adantlr ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → ( 𝑦𝑥𝑦 = 𝑥𝑥𝑦 ) )
40 25 33 39 ecase23d ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵𝐴𝑦𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) ) → 𝑦𝑥 )
41 40 exp44 ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( 𝑦𝐵 → ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑦𝑥 ) ) ) )
42 41 com34 ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( 𝑥 ∈ ( 𝐴𝐵 ) → ( 𝑦𝐵𝑦𝑥 ) ) ) )
43 42 imp31 ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) → ( 𝑦𝐵𝑦𝑥 ) )
44 43 ssrdv ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ) → 𝐵𝑥 )
45 44 adantrr ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵𝑥 )
46 18 45 eqssd ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 = 𝐵 )
47 11 ad2antrl ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥𝐴 )
48 46 47 eqeltrrd ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵𝐴 )
49 48 rexlimdvaa ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴𝐵 ) ( ( 𝐴𝐵 ) ∩ 𝑥 ) = ∅ → 𝐵𝐴 ) )
50 10 49 syl5 ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵𝐴 ) → ( ( Ord 𝐴 ∧ ( 𝐴𝐵 ) ≠ ∅ ) → 𝐵𝐴 ) )
51 50 exp4b ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( Ord 𝐴 → ( ( 𝐴𝐵 ) ≠ ∅ → 𝐵𝐴 ) ) ) )
52 51 com23 ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( Ord 𝐴 → ( 𝐵𝐴 → ( ( 𝐴𝐵 ) ≠ ∅ → 𝐵𝐴 ) ) ) )
53 52 adantrd ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( ( 𝐴𝐵 ) ≠ ∅ → 𝐵𝐴 ) ) ) )
54 53 pm2.43i ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( ( 𝐴𝐵 ) ≠ ∅ → 𝐵𝐴 ) ) )
55 7 54 syl7 ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( ( 𝐵𝐴𝐵𝐴 ) → 𝐵𝐴 ) ) )
56 55 exp4a ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) ) )
57 56 pm2.43d ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) )
58 57 impd ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( 𝐵𝐴𝐵𝐴 ) → 𝐵𝐴 ) )
59 6 58 impbid ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵𝐴 ↔ ( 𝐵𝐴𝐵𝐴 ) ) )