Metamath Proof Explorer


Theorem un0mulcl

Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 ( 𝜑𝑆 ⊆ ℂ )
un0addcl.2 𝑇 = ( 𝑆 ∪ { 0 } )
un0mulcl.3 ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑆 )
Assertion un0mulcl ( ( 𝜑 ∧ ( 𝑀𝑇𝑁𝑇 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 un0addcl.1 ( 𝜑𝑆 ⊆ ℂ )
2 un0addcl.2 𝑇 = ( 𝑆 ∪ { 0 } )
3 un0mulcl.3 ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑆 )
4 2 eleq2i ( 𝑁𝑇𝑁 ∈ ( 𝑆 ∪ { 0 } ) )
5 elun ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁𝑆𝑁 ∈ { 0 } ) )
6 4 5 bitri ( 𝑁𝑇 ↔ ( 𝑁𝑆𝑁 ∈ { 0 } ) )
7 2 eleq2i ( 𝑀𝑇𝑀 ∈ ( 𝑆 ∪ { 0 } ) )
8 elun ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀𝑆𝑀 ∈ { 0 } ) )
9 7 8 bitri ( 𝑀𝑇 ↔ ( 𝑀𝑆𝑀 ∈ { 0 } ) )
10 ssun1 𝑆 ⊆ ( 𝑆 ∪ { 0 } )
11 10 2 sseqtrri 𝑆𝑇
12 11 3 sseldi ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 )
13 12 expr ( ( 𝜑𝑀𝑆 ) → ( 𝑁𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
14 1 sselda ( ( 𝜑𝑁𝑆 ) → 𝑁 ∈ ℂ )
15 14 mul02d ( ( 𝜑𝑁𝑆 ) → ( 0 · 𝑁 ) = 0 )
16 ssun2 { 0 } ⊆ ( 𝑆 ∪ { 0 } )
17 16 2 sseqtrri { 0 } ⊆ 𝑇
18 c0ex 0 ∈ V
19 18 snss ( 0 ∈ 𝑇 ↔ { 0 } ⊆ 𝑇 )
20 17 19 mpbir 0 ∈ 𝑇
21 15 20 syl6eqel ( ( 𝜑𝑁𝑆 ) → ( 0 · 𝑁 ) ∈ 𝑇 )
22 elsni ( 𝑀 ∈ { 0 } → 𝑀 = 0 )
23 22 oveq1d ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 0 · 𝑁 ) )
24 23 eleq1d ( 𝑀 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 0 · 𝑁 ) ∈ 𝑇 ) )
25 21 24 syl5ibrcom ( ( 𝜑𝑁𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
26 25 impancom ( ( 𝜑𝑀 ∈ { 0 } ) → ( 𝑁𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
27 13 26 jaodan ( ( 𝜑 ∧ ( 𝑀𝑆𝑀 ∈ { 0 } ) ) → ( 𝑁𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
28 9 27 sylan2b ( ( 𝜑𝑀𝑇 ) → ( 𝑁𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
29 0cnd ( 𝜑 → 0 ∈ ℂ )
30 29 snssd ( 𝜑 → { 0 } ⊆ ℂ )
31 1 30 unssd ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ )
32 2 31 eqsstrid ( 𝜑𝑇 ⊆ ℂ )
33 32 sselda ( ( 𝜑𝑀𝑇 ) → 𝑀 ∈ ℂ )
34 33 mul01d ( ( 𝜑𝑀𝑇 ) → ( 𝑀 · 0 ) = 0 )
35 34 20 syl6eqel ( ( 𝜑𝑀𝑇 ) → ( 𝑀 · 0 ) ∈ 𝑇 )
36 elsni ( 𝑁 ∈ { 0 } → 𝑁 = 0 )
37 36 oveq2d ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) )
38 37 eleq1d ( 𝑁 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 · 0 ) ∈ 𝑇 ) )
39 35 38 syl5ibrcom ( ( 𝜑𝑀𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
40 28 39 jaod ( ( 𝜑𝑀𝑇 ) → ( ( 𝑁𝑆𝑁 ∈ { 0 } ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
41 6 40 syl5bi ( ( 𝜑𝑀𝑇 ) → ( 𝑁𝑇 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) )
42 41 impr ( ( 𝜑 ∧ ( 𝑀𝑇𝑁𝑇 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 )