Metamath Proof Explorer


Theorem unen

Description: Equinumerosity of union of disjoint sets. Theorem 4 of Suppes p. 92. (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion unen ( ( ( 𝐴𝐵𝐶𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 bren ( 𝐴𝐵 ↔ ∃ 𝑥 𝑥 : 𝐴1-1-onto𝐵 )
2 bren ( 𝐶𝐷 ↔ ∃ 𝑦 𝑦 : 𝐶1-1-onto𝐷 )
3 exdistrv ( ∃ 𝑥𝑦 ( 𝑥 : 𝐴1-1-onto𝐵𝑦 : 𝐶1-1-onto𝐷 ) ↔ ( ∃ 𝑥 𝑥 : 𝐴1-1-onto𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶1-1-onto𝐷 ) )
4 vex 𝑥 ∈ V
5 vex 𝑦 ∈ V
6 4 5 unex ( 𝑥𝑦 ) ∈ V
7 f1oun ( ( ( 𝑥 : 𝐴1-1-onto𝐵𝑦 : 𝐶1-1-onto𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝑥𝑦 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) )
8 f1oen3g ( ( ( 𝑥𝑦 ) ∈ V ∧ ( 𝑥𝑦 ) : ( 𝐴𝐶 ) –1-1-onto→ ( 𝐵𝐷 ) ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) )
9 6 7 8 sylancr ( ( ( 𝑥 : 𝐴1-1-onto𝐵𝑦 : 𝐶1-1-onto𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) )
10 9 ex ( ( 𝑥 : 𝐴1-1-onto𝐵𝑦 : 𝐶1-1-onto𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) ) )
11 10 exlimivv ( ∃ 𝑥𝑦 ( 𝑥 : 𝐴1-1-onto𝐵𝑦 : 𝐶1-1-onto𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) ) )
12 3 11 sylbir ( ( ∃ 𝑥 𝑥 : 𝐴1-1-onto𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶1-1-onto𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) ) )
13 1 2 12 syl2anb ( ( 𝐴𝐵𝐶𝐷 ) → ( ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) ) )
14 13 imp ( ( ( 𝐴𝐵𝐶𝐷 ) ∧ ( ( 𝐴𝐶 ) = ∅ ∧ ( 𝐵𝐷 ) = ∅ ) ) → ( 𝐴𝐶 ) ≈ ( 𝐵𝐷 ) )