Metamath Proof Explorer


Theorem unissb

Description: Relationship involving membership, subset, and union. Exercise 5 of Enderton p. 26 and its converse. (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion unissb ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 eluni ( 𝑦 𝐴 ↔ ∃ 𝑥 ( 𝑦𝑥𝑥𝐴 ) )
2 1 imbi1i ( ( 𝑦 𝐴𝑦𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) )
3 19.23v ( ∀ 𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) )
4 2 3 bitr4i ( ( 𝑦 𝐴𝑦𝐵 ) ↔ ∀ 𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) )
5 4 albii ( ∀ 𝑦 ( 𝑦 𝐴𝑦𝐵 ) ↔ ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) )
6 alcom ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑥𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) )
7 19.21v ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐵 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) ) )
8 impexp ( ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ( 𝑦𝑥 → ( 𝑥𝐴𝑦𝐵 ) ) )
9 bi2.04 ( ( 𝑦𝑥 → ( 𝑥𝐴𝑦𝐵 ) ) ↔ ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐵 ) ) )
10 8 9 bitri ( ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐵 ) ) )
11 10 albii ( ∀ 𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐵 ) ) )
12 dfss2 ( 𝑥𝐵 ↔ ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) )
13 12 imbi2i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝑥𝑦𝐵 ) ) )
14 7 11 13 3bitr4i ( ∀ 𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
15 14 albii ( ∀ 𝑥𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
16 6 15 bitri ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
17 5 16 bitri ( ∀ 𝑦 ( 𝑦 𝐴𝑦𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
18 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑦 ( 𝑦 𝐴𝑦𝐵 ) )
19 df-ral ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
20 17 18 19 3bitr4i ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )