Metamath Proof Explorer


Theorem vdwlem2

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem2.r ( 𝜑𝑅 ∈ Fin )
vdwlem2.k ( 𝜑𝐾 ∈ ℕ0 )
vdwlem2.w ( 𝜑𝑊 ∈ ℕ )
vdwlem2.n ( 𝜑𝑁 ∈ ℕ )
vdwlem2.f ( 𝜑𝐹 : ( 1 ... 𝑀 ) ⟶ 𝑅 )
vdwlem2.m ( 𝜑𝑀 ∈ ( ℤ ‘ ( 𝑊 + 𝑁 ) ) )
vdwlem2.g 𝐺 = ( 𝑥 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) )
Assertion vdwlem2 ( 𝜑 → ( 𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹 ) )

Proof

Step Hyp Ref Expression
1 vdwlem2.r ( 𝜑𝑅 ∈ Fin )
2 vdwlem2.k ( 𝜑𝐾 ∈ ℕ0 )
3 vdwlem2.w ( 𝜑𝑊 ∈ ℕ )
4 vdwlem2.n ( 𝜑𝑁 ∈ ℕ )
5 vdwlem2.f ( 𝜑𝐹 : ( 1 ... 𝑀 ) ⟶ 𝑅 )
6 vdwlem2.m ( 𝜑𝑀 ∈ ( ℤ ‘ ( 𝑊 + 𝑁 ) ) )
7 vdwlem2.g 𝐺 = ( 𝑥 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) )
8 id ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ )
9 nnaddcl ( ( 𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑎 + 𝑁 ) ∈ ℕ )
10 8 4 9 syl2anr ( ( 𝜑𝑎 ∈ ℕ ) → ( 𝑎 + 𝑁 ) ∈ ℕ )
11 simpllr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑎 ∈ ℕ )
12 11 nncnd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑎 ∈ ℂ )
13 4 ad3antrrr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑁 ∈ ℕ )
14 13 nncnd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑁 ∈ ℂ )
15 elfznn0 ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → 𝑚 ∈ ℕ0 )
16 15 adantl ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℕ0 )
17 16 nn0cnd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℂ )
18 simplrl ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑑 ∈ ℕ )
19 18 nncnd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑑 ∈ ℂ )
20 17 19 mulcld ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝑑 ) ∈ ℂ )
21 12 14 20 add32d ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) = ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) )
22 oveq1 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝑥 + 𝑁 ) = ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) )
23 22 eleq1d ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) )
24 elfznn ( 𝑥 ∈ ( 1 ... 𝑊 ) → 𝑥 ∈ ℕ )
25 nnaddcl ( ( 𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑥 + 𝑁 ) ∈ ℕ )
26 24 4 25 syl2anr ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ℕ )
27 nnuz ℕ = ( ℤ ‘ 1 )
28 26 27 eleqtrdi ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ( ℤ ‘ 1 ) )
29 elfzuz3 ( 𝑥 ∈ ( 1 ... 𝑊 ) → 𝑊 ∈ ( ℤ𝑥 ) )
30 4 nnzd ( 𝜑𝑁 ∈ ℤ )
31 eluzadd ( ( 𝑊 ∈ ( ℤ𝑥 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑊 + 𝑁 ) ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) )
32 29 30 31 syl2anr ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑊 + 𝑁 ) ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) )
33 uztrn ( ( 𝑀 ∈ ( ℤ ‘ ( 𝑊 + 𝑁 ) ) ∧ ( 𝑊 + 𝑁 ) ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) ) → 𝑀 ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) )
34 6 32 33 syl2an2r ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → 𝑀 ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) )
35 elfzuzb ( ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑥 + 𝑁 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ ‘ ( 𝑥 + 𝑁 ) ) ) )
36 28 34 35 sylanbrc ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) )
37 36 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... 𝑊 ) ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) )
38 37 ad3antrrr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑊 ) ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) )
39 simplrr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) )
40 eqid ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) )
41 oveq1 ( 𝑛 = 𝑚 → ( 𝑛 · 𝑑 ) = ( 𝑚 · 𝑑 ) )
42 41 oveq2d ( 𝑛 = 𝑚 → ( 𝑎 + ( 𝑛 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) ) )
43 42 rspceeqv ( ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) )
44 40 43 mpan2 ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) )
45 44 adantl ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) )
46 2 ad2antrr ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → 𝐾 ∈ ℕ0 )
47 46 adantr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℕ0 )
48 vdwapval ( ( 𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) )
49 47 11 18 48 syl3anc ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) )
50 45 49 mpbird ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) )
51 39 50 sseldd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝐺 “ { 𝑐 } ) )
52 5 ffvelrnda ( ( 𝜑 ∧ ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) ∈ 𝑅 )
53 36 52 syldan ( ( 𝜑𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) ∈ 𝑅 )
54 53 7 fmptd ( 𝜑𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 )
55 54 ffnd ( 𝜑𝐺 Fn ( 1 ... 𝑊 ) )
56 55 ad3antrrr ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐺 Fn ( 1 ... 𝑊 ) )
57 fniniseg ( 𝐺 Fn ( 1 ... 𝑊 ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝐺 “ { 𝑐 } ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) )
58 56 57 syl ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝐺 “ { 𝑐 } ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) )
59 51 58 mpbid ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) )
60 59 simpld ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) )
61 23 38 60 rspcdva ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ∈ ( 1 ... 𝑀 ) )
62 21 61 eqeltrd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) )
63 21 fveq2d ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) )
64 22 fveq2d ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) )
65 fvex ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ∈ V
66 64 7 65 fvmpt ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) )
67 60 66 syl ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) )
68 59 simprd ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 )
69 63 67 68 3eqtr2d ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 )
70 62 69 jca ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) )
71 eleq1 ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ) )
72 fveqeq2 ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( ( 𝐹𝑥 ) = 𝑐 ↔ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) )
73 71 72 anbi12d ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹𝑥 ) = 𝑐 ) ↔ ( ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) )
74 70 73 syl5ibrcom ( ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹𝑥 ) = 𝑐 ) ) )
75 74 rexlimdva ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹𝑥 ) = 𝑐 ) ) )
76 10 adantr ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( 𝑎 + 𝑁 ) ∈ ℕ )
77 simprl ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → 𝑑 ∈ ℕ )
78 vdwapval ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑎 + 𝑁 ) ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) )
79 46 76 77 78 syl3anc ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) )
80 5 ffnd ( 𝜑𝐹 Fn ( 1 ... 𝑀 ) )
81 80 ad2antrr ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → 𝐹 Fn ( 1 ... 𝑀 ) )
82 fniniseg ( 𝐹 Fn ( 1 ... 𝑀 ) → ( 𝑥 ∈ ( 𝐹 “ { 𝑐 } ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹𝑥 ) = 𝑐 ) ) )
83 81 82 syl ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( 𝐹 “ { 𝑐 } ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹𝑥 ) = 𝑐 ) ) )
84 75 79 83 3imtr4d ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( 𝐹 “ { 𝑐 } ) ) )
85 84 ssrdv ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) ) → ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) )
86 85 expr ( ( ( 𝜑𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) → ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
87 86 reximdva ( ( 𝜑𝑎 ∈ ℕ ) → ( ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) → ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
88 oveq1 ( 𝑏 = ( 𝑎 + 𝑁 ) → ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) = ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) )
89 88 sseq1d ( 𝑏 = ( 𝑎 + 𝑁 ) → ( ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ↔ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
90 89 rexbidv ( 𝑏 = ( 𝑎 + 𝑁 ) → ( ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
91 90 rspcev ( ( ( 𝑎 + 𝑁 ) ∈ ℕ ∧ ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) )
92 10 87 91 syl6an ( ( 𝜑𝑎 ∈ ℕ ) → ( ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
93 92 rexlimdva ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
94 93 eximdv ( 𝜑 → ( ∃ 𝑐𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) → ∃ 𝑐𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
95 ovex ( 1 ... 𝑊 ) ∈ V
96 95 2 54 vdwmc ( 𝜑 → ( 𝐾 MonoAP 𝐺 ↔ ∃ 𝑐𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐺 “ { 𝑐 } ) ) )
97 ovex ( 1 ... 𝑀 ) ∈ V
98 97 2 5 vdwmc ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
99 94 96 98 3imtr4d ( 𝜑 → ( 𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹 ) )