Metamath Proof Explorer


Theorem wdompwdom

Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdompwdom ( 𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 )

Proof

Step Hyp Ref Expression
1 relwdom Rel ≼*
2 1 brrelex2i ( 𝑋* 𝑌𝑌 ∈ V )
3 2 pwexd ( 𝑋* 𝑌 → 𝒫 𝑌 ∈ V )
4 0ss ∅ ⊆ 𝑌
5 sspwb ( ∅ ⊆ 𝑌 ↔ 𝒫 ∅ ⊆ 𝒫 𝑌 )
6 4 5 mpbi 𝒫 ∅ ⊆ 𝒫 𝑌
7 ssdomg ( 𝒫 𝑌 ∈ V → ( 𝒫 ∅ ⊆ 𝒫 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌 ) )
8 3 6 7 mpisyl ( 𝑋* 𝑌 → 𝒫 ∅ ≼ 𝒫 𝑌 )
9 pweq ( 𝑋 = ∅ → 𝒫 𝑋 = 𝒫 ∅ )
10 9 breq1d ( 𝑋 = ∅ → ( 𝒫 𝑋 ≼ 𝒫 𝑌 ↔ 𝒫 ∅ ≼ 𝒫 𝑌 ) )
11 8 10 syl5ibr ( 𝑋 = ∅ → ( 𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) )
12 brwdomn0 ( 𝑋 ≠ ∅ → ( 𝑋* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )
13 vex 𝑧 ∈ V
14 fopwdom ( ( 𝑧 ∈ V ∧ 𝑧 : 𝑌onto𝑋 ) → 𝒫 𝑋 ≼ 𝒫 𝑌 )
15 13 14 mpan ( 𝑧 : 𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌 )
16 15 exlimiv ( ∃ 𝑧 𝑧 : 𝑌onto𝑋 → 𝒫 𝑋 ≼ 𝒫 𝑌 )
17 12 16 syl6bi ( 𝑋 ≠ ∅ → ( 𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 ) )
18 11 17 pm2.61ine ( 𝑋* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌 )