Metamath Proof Explorer


Theorem wereu

Description: A subset of a well-ordered set has a unique minimal element. (Contributed by NM, 18-Mar-1997) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion wereu ( ( 𝑅 We 𝐴 ∧ ( 𝐵𝑉𝐵𝐴𝐵 ≠ ∅ ) ) → ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
2 fri ( ( ( 𝐵𝑉𝑅 Fr 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
3 2 exp32 ( ( 𝐵𝑉𝑅 Fr 𝐴 ) → ( 𝐵𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) )
4 3 expcom ( 𝑅 Fr 𝐴 → ( 𝐵𝑉 → ( 𝐵𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) )
5 4 3imp2 ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝑉𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
6 1 5 sylan ( ( 𝑅 We 𝐴 ∧ ( 𝐵𝑉𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
7 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
8 soss ( 𝐵𝐴 → ( 𝑅 Or 𝐴𝑅 Or 𝐵 ) )
9 7 8 mpan9 ( ( 𝑅 We 𝐴𝐵𝐴 ) → 𝑅 Or 𝐵 )
10 somo ( 𝑅 Or 𝐵 → ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
11 9 10 syl ( ( 𝑅 We 𝐴𝐵𝐴 ) → ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
12 11 3ad2antr2 ( ( 𝑅 We 𝐴 ∧ ( 𝐵𝑉𝐵𝐴𝐵 ≠ ∅ ) ) → ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
13 reu5 ( ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
14 6 12 13 sylanbrc ( ( 𝑅 We 𝐴 ∧ ( 𝐵𝑉𝐵𝐴𝐵 ≠ ∅ ) ) → ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )