Metamath Proof Explorer


Theorem xpdom3

Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of Suppes p. 98. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpdom3 ( ( 𝐴𝑉𝐵𝑊𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐵 )
2 xpsneng ( ( 𝐴𝑉𝑥𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 )
3 2 3adant2 ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 )
4 3 ensymd ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → 𝐴 ≈ ( 𝐴 × { 𝑥 } ) )
5 xpexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )
6 5 3adant3 ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V )
7 simp3 ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → 𝑥𝐵 )
8 7 snssd ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → { 𝑥 } ⊆ 𝐵 )
9 xpss2 ( { 𝑥 } ⊆ 𝐵 → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) )
10 8 9 syl ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) )
11 ssdomg ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) )
12 6 10 11 sylc ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) )
13 endomtr ( ( 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ∧ ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )
14 4 12 13 syl2anc ( ( 𝐴𝑉𝐵𝑊𝑥𝐵 ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )
15 14 3expia ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥𝐵𝐴 ≼ ( 𝐴 × 𝐵 ) ) )
16 15 exlimdv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥 𝑥𝐵𝐴 ≼ ( 𝐴 × 𝐵 ) ) )
17 1 16 syl5bi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) )
18 17 3impia ( ( 𝐴𝑉𝐵𝑊𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )