Metamath Proof Explorer


Theorem xpmapenlem

Description: Lemma for xpmapen . (Contributed by NM, 1-May-2004) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypotheses xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
xpmapenlem.4 𝐷 = ( 𝑧𝐶 ↦ ( 1st ‘ ( 𝑥𝑧 ) ) )
xpmapenlem.5 𝑅 = ( 𝑧𝐶 ↦ ( 2nd ‘ ( 𝑥𝑧 ) ) )
xpmapenlem.6 𝑆 = ( 𝑧𝐶 ↦ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
Assertion xpmapenlem ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xpmapen.1 𝐴 ∈ V
2 xpmapen.2 𝐵 ∈ V
3 xpmapen.3 𝐶 ∈ V
4 xpmapenlem.4 𝐷 = ( 𝑧𝐶 ↦ ( 1st ‘ ( 𝑥𝑧 ) ) )
5 xpmapenlem.5 𝑅 = ( 𝑧𝐶 ↦ ( 2nd ‘ ( 𝑥𝑧 ) ) )
6 xpmapenlem.6 𝑆 = ( 𝑧𝐶 ↦ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
7 ovex ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∈ V
8 ovex ( 𝐴m 𝐶 ) ∈ V
9 ovex ( 𝐵m 𝐶 ) ∈ V
10 8 9 xpex ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ∈ V
11 1 2 xpex ( 𝐴 × 𝐵 ) ∈ V
12 11 3 elmap ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) )
13 ffvelrn ( ( 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) )
14 12 13 sylanb ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) )
15 xp1st ( ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ ( 𝑥𝑧 ) ) ∈ 𝐴 )
16 14 15 syl ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧𝐶 ) → ( 1st ‘ ( 𝑥𝑧 ) ) ∈ 𝐴 )
17 16 4 fmptd ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 : 𝐶𝐴 )
18 1 3 elmap ( 𝐷 ∈ ( 𝐴m 𝐶 ) ↔ 𝐷 : 𝐶𝐴 )
19 17 18 sylibr ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 ∈ ( 𝐴m 𝐶 ) )
20 xp2nd ( ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ ( 𝑥𝑧 ) ) ∈ 𝐵 )
21 14 20 syl ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧𝐶 ) → ( 2nd ‘ ( 𝑥𝑧 ) ) ∈ 𝐵 )
22 21 5 fmptd ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 : 𝐶𝐵 )
23 2 3 elmap ( 𝑅 ∈ ( 𝐵m 𝐶 ) ↔ 𝑅 : 𝐶𝐵 )
24 22 23 sylibr ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 ∈ ( 𝐵m 𝐶 ) )
25 19 24 opelxpd ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → ⟨ 𝐷 , 𝑅 ⟩ ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) )
26 xp1st ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 1st𝑦 ) ∈ ( 𝐴m 𝐶 ) )
27 1 3 elmap ( ( 1st𝑦 ) ∈ ( 𝐴m 𝐶 ) ↔ ( 1st𝑦 ) : 𝐶𝐴 )
28 26 27 sylib ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 1st𝑦 ) : 𝐶𝐴 )
29 28 ffvelrnda ( ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ∧ 𝑧𝐶 ) → ( ( 1st𝑦 ) ‘ 𝑧 ) ∈ 𝐴 )
30 xp2nd ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 2nd𝑦 ) ∈ ( 𝐵m 𝐶 ) )
31 2 3 elmap ( ( 2nd𝑦 ) ∈ ( 𝐵m 𝐶 ) ↔ ( 2nd𝑦 ) : 𝐶𝐵 )
32 30 31 sylib ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 2nd𝑦 ) : 𝐶𝐵 )
33 32 ffvelrnda ( ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ∧ 𝑧𝐶 ) → ( ( 2nd𝑦 ) ‘ 𝑧 ) ∈ 𝐵 )
34 29 33 opelxpd ( ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ∧ 𝑧𝐶 ) → ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ∈ ( 𝐴 × 𝐵 ) )
35 34 6 fmptd ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) )
36 11 3 elmap ( 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) )
37 35 36 sylibr ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) )
38 1st2nd2 ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
39 38 ad2antlr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
40 28 feqmptd ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 1st𝑦 ) = ( 𝑧𝐶 ↦ ( ( 1st𝑦 ) ‘ 𝑧 ) ) )
41 40 ad2antlr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st𝑦 ) = ( 𝑧𝐶 ↦ ( ( 1st𝑦 ) ‘ 𝑧 ) ) )
42 simplr ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → 𝑥 = 𝑆 )
43 42 fveq1d ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) = ( 𝑆𝑧 ) )
44 opex ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ∈ V
45 6 fvmpt2 ( ( 𝑧𝐶 ∧ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ∈ V ) → ( 𝑆𝑧 ) = ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
46 44 45 mpan2 ( 𝑧𝐶 → ( 𝑆𝑧 ) = ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
47 46 adantl ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 𝑆𝑧 ) = ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
48 43 47 eqtrd ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) = ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ )
49 48 fveq2d ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 1st ‘ ( 𝑥𝑧 ) ) = ( 1st ‘ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ) )
50 fvex ( ( 1st𝑦 ) ‘ 𝑧 ) ∈ V
51 fvex ( ( 2nd𝑦 ) ‘ 𝑧 ) ∈ V
52 50 51 op1st ( 1st ‘ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ) = ( ( 1st𝑦 ) ‘ 𝑧 )
53 49 52 syl6eq ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 1st ‘ ( 𝑥𝑧 ) ) = ( ( 1st𝑦 ) ‘ 𝑧 ) )
54 53 mpteq2dva ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧𝐶 ↦ ( 1st ‘ ( 𝑥𝑧 ) ) ) = ( 𝑧𝐶 ↦ ( ( 1st𝑦 ) ‘ 𝑧 ) ) )
55 4 54 syl5eq ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝐷 = ( 𝑧𝐶 ↦ ( ( 1st𝑦 ) ‘ 𝑧 ) ) )
56 41 55 eqtr4d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st𝑦 ) = 𝐷 )
57 32 feqmptd ( 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) → ( 2nd𝑦 ) = ( 𝑧𝐶 ↦ ( ( 2nd𝑦 ) ‘ 𝑧 ) ) )
58 57 ad2antlr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd𝑦 ) = ( 𝑧𝐶 ↦ ( ( 2nd𝑦 ) ‘ 𝑧 ) ) )
59 48 fveq2d ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 2nd ‘ ( 𝑥𝑧 ) ) = ( 2nd ‘ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ) )
60 50 51 op2nd ( 2nd ‘ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ) = ( ( 2nd𝑦 ) ‘ 𝑧 )
61 59 60 syl6eq ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧𝐶 ) → ( 2nd ‘ ( 𝑥𝑧 ) ) = ( ( 2nd𝑦 ) ‘ 𝑧 ) )
62 61 mpteq2dva ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧𝐶 ↦ ( 2nd ‘ ( 𝑥𝑧 ) ) ) = ( 𝑧𝐶 ↦ ( ( 2nd𝑦 ) ‘ 𝑧 ) ) )
63 5 62 syl5eq ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑅 = ( 𝑧𝐶 ↦ ( ( 2nd𝑦 ) ‘ 𝑧 ) ) )
64 58 63 eqtr4d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd𝑦 ) = 𝑅 )
65 56 64 opeq12d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ 𝐷 , 𝑅 ⟩ )
66 39 65 eqtrd ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ )
67 simpll ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) )
68 67 12 sylib ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) )
69 68 feqmptd ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑥 = ( 𝑧𝐶 ↦ ( 𝑥𝑧 ) ) )
70 simpr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ )
71 70 fveq2d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 1st𝑦 ) = ( 1st ‘ ⟨ 𝐷 , 𝑅 ⟩ ) )
72 19 ad2antrr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝐷 ∈ ( 𝐴m 𝐶 ) )
73 24 ad2antrr ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑅 ∈ ( 𝐵m 𝐶 ) )
74 op1stg ( ( 𝐷 ∈ ( 𝐴m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵m 𝐶 ) ) → ( 1st ‘ ⟨ 𝐷 , 𝑅 ⟩ ) = 𝐷 )
75 72 73 74 syl2anc ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 1st ‘ ⟨ 𝐷 , 𝑅 ⟩ ) = 𝐷 )
76 71 75 eqtrd ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 1st𝑦 ) = 𝐷 )
77 76 fveq1d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( ( 1st𝑦 ) ‘ 𝑧 ) = ( 𝐷𝑧 ) )
78 fvex ( 1st ‘ ( 𝑥𝑧 ) ) ∈ V
79 4 fvmpt2 ( ( 𝑧𝐶 ∧ ( 1st ‘ ( 𝑥𝑧 ) ) ∈ V ) → ( 𝐷𝑧 ) = ( 1st ‘ ( 𝑥𝑧 ) ) )
80 78 79 mpan2 ( 𝑧𝐶 → ( 𝐷𝑧 ) = ( 1st ‘ ( 𝑥𝑧 ) ) )
81 77 80 sylan9eq ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ( ( 1st𝑦 ) ‘ 𝑧 ) = ( 1st ‘ ( 𝑥𝑧 ) ) )
82 70 fveq2d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 2nd𝑦 ) = ( 2nd ‘ ⟨ 𝐷 , 𝑅 ⟩ ) )
83 op2ndg ( ( 𝐷 ∈ ( 𝐴m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵m 𝐶 ) ) → ( 2nd ‘ ⟨ 𝐷 , 𝑅 ⟩ ) = 𝑅 )
84 72 73 83 syl2anc ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 2nd ‘ ⟨ 𝐷 , 𝑅 ⟩ ) = 𝑅 )
85 82 84 eqtrd ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 2nd𝑦 ) = 𝑅 )
86 85 fveq1d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( ( 2nd𝑦 ) ‘ 𝑧 ) = ( 𝑅𝑧 ) )
87 fvex ( 2nd ‘ ( 𝑥𝑧 ) ) ∈ V
88 5 fvmpt2 ( ( 𝑧𝐶 ∧ ( 2nd ‘ ( 𝑥𝑧 ) ) ∈ V ) → ( 𝑅𝑧 ) = ( 2nd ‘ ( 𝑥𝑧 ) ) )
89 87 88 mpan2 ( 𝑧𝐶 → ( 𝑅𝑧 ) = ( 2nd ‘ ( 𝑥𝑧 ) ) )
90 86 89 sylan9eq ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ( ( 2nd𝑦 ) ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥𝑧 ) ) )
91 81 90 opeq12d ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ = ⟨ ( 1st ‘ ( 𝑥𝑧 ) ) , ( 2nd ‘ ( 𝑥𝑧 ) ) ⟩ )
92 68 ffvelrnda ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) )
93 1st2nd2 ( ( 𝑥𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 𝑥𝑧 ) = ⟨ ( 1st ‘ ( 𝑥𝑧 ) ) , ( 2nd ‘ ( 𝑥𝑧 ) ) ⟩ )
94 92 93 syl ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ( 𝑥𝑧 ) = ⟨ ( 1st ‘ ( 𝑥𝑧 ) ) , ( 2nd ‘ ( 𝑥𝑧 ) ) ⟩ )
95 91 94 eqtr4d ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) ∧ 𝑧𝐶 ) → ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ = ( 𝑥𝑧 ) )
96 95 mpteq2dva ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → ( 𝑧𝐶 ↦ ⟨ ( ( 1st𝑦 ) ‘ 𝑧 ) , ( ( 2nd𝑦 ) ‘ 𝑧 ) ⟩ ) = ( 𝑧𝐶 ↦ ( 𝑥𝑧 ) ) )
97 6 96 syl5eq ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑆 = ( 𝑧𝐶 ↦ ( 𝑥𝑧 ) ) )
98 69 97 eqtr4d ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) ∧ 𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) → 𝑥 = 𝑆 )
99 66 98 impbida ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) ) ) → ( 𝑥 = 𝑆𝑦 = ⟨ 𝐷 , 𝑅 ⟩ ) )
100 7 10 25 37 99 en3i ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴m 𝐶 ) × ( 𝐵m 𝐶 ) )