Metamath Proof Explorer


Theorem xpscf

Description: Equivalent condition for the pair function to be a proper function on A . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xpscf ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } : 2o𝐴 ↔ ( 𝑋𝐴𝑌𝐴 ) )

Proof

Step Hyp Ref Expression
1 ifid if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) = 𝐴
2 1 eleq2i ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ 𝐴 )
3 2 ralbii ( ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ 𝐴 )
4 3 anbi2i ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ 𝐴 ) )
5 df-3an ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V ∧ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) ↔ ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V ∧ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ) ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) )
6 elixp2 ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V ∧ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) )
7 2onn 2o ∈ ω
8 fnex ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ 2o ∈ ω ) → { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V )
9 7 8 mpan2 ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o → { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V )
10 9 pm4.71ri ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V ∧ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ) )
11 10 anbi1i ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) ↔ ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ V ∧ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ) ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) )
12 5 6 11 3bitr4i ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ) )
13 ffnfv ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } : 2o𝐴 ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ∀ 𝑘 ∈ 2o ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 𝑘 ) ∈ 𝐴 ) )
14 4 12 13 3bitr4i ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } : 2o𝐴 )
15 xpsfrnel2 ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐴 ) ↔ ( 𝑋𝐴𝑌𝐴 ) )
16 14 15 bitr3i ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } : 2o𝐴 ↔ ( 𝑋𝐴𝑌𝐴 ) )