Metamath Proof Explorer


Theorem xrsup0

Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrsup0 sup ( ∅ , ℝ* , < ) = -∞

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ ℝ*
2 mnfxr -∞ ∈ ℝ*
3 ral0 𝑦 ∈ ∅ ¬ -∞ < 𝑦
4 rexr ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* )
5 nltmnf ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ )
6 4 5 syl ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ )
7 6 pm2.21d ( 𝑦 ∈ ℝ → ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) )
8 7 rgen 𝑦 ∈ ℝ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 )
9 supxr ( ( ( ∅ ⊆ ℝ* ∧ -∞ ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) → sup ( ∅ , ℝ* , < ) = -∞ )
10 1 2 3 8 9 mp4an sup ( ∅ , ℝ* , < ) = -∞