Metamath Proof Explorer


Theorem zfpair2

Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr . See zfpair for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006)

Ref Expression
Assertion zfpair2 { 𝑥 , 𝑦 } ∈ V

Proof

Step Hyp Ref Expression
1 ax-pr 𝑧𝑤 ( ( 𝑤 = 𝑥𝑤 = 𝑦 ) → 𝑤𝑧 )
2 1 bm1.3ii 𝑧𝑤 ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) )
3 dfcleq ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) )
4 vex 𝑤 ∈ V
5 4 elpr ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) )
6 5 bibi2i ( ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) )
7 6 albii ( ∀ 𝑤 ( 𝑤𝑧𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) )
8 3 7 bitri ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) )
9 8 exbii ( ∃ 𝑧 𝑧 = { 𝑥 , 𝑦 } ↔ ∃ 𝑧𝑤 ( 𝑤𝑧 ↔ ( 𝑤 = 𝑥𝑤 = 𝑦 ) ) )
10 2 9 mpbir 𝑧 𝑧 = { 𝑥 , 𝑦 }
11 10 issetri { 𝑥 , 𝑦 } ∈ V