Metamath Proof Explorer


Theorem zfregs2

Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by Wolf Lammen, 27-Sep-2013)

Ref Expression
Assertion zfregs2 ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 zfregs ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ )
2 incom ( 𝑥𝐴 ) = ( 𝐴𝑥 )
3 2 eqeq1i ( ( 𝑥𝐴 ) = ∅ ↔ ( 𝐴𝑥 ) = ∅ )
4 3 rexbii ( ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ↔ ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ )
5 1 4 sylib ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ )
6 disj1 ( ( 𝐴𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) )
7 6 rexbii ( ∃ 𝑥𝐴 ( 𝐴𝑥 ) = ∅ ↔ ∃ 𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) )
8 5 7 sylib ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) )
9 alinexa ( ∀ 𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
10 9 rexbii ( ∃ 𝑥𝐴𝑦 ( 𝑦𝐴 → ¬ 𝑦𝑥 ) ↔ ∃ 𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
11 8 10 sylib ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
12 dfrex2 ( ∃ 𝑥𝐴 ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ¬ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
13 11 12 sylib ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
14 notnotb ( ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
15 14 ralbii ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) ↔ ∀ 𝑥𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝑥 ) )
16 13 15 sylnibr ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑦𝑥 ) )