MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpii Unicode version

Theorem mpii 43
Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 31-Jul-2012.)
Hypotheses
Ref Expression
mpii.1
mpii.2
Assertion
Ref Expression
mpii

Proof of Theorem mpii
StepHypRef Expression
1 mpii.1 . . 3
21a1i 11 . 2
3 mpii.2 . 2
42, 3mpdi 42 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  intmin  4306  dfiin2g  4363  ssorduni  6621  suceloni  6648  lublecllem  15618  irredmul  17358  opnneiid  19627  isufil2  20409  mdbr3  27216  mdbr4  27217  dmdbr5  27227  filnetlem4  30199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator