![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt22eqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 6409. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
mpt22eqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm13.183 3240 | . . . . . 6 | |
2 | 1 | ralimi 2850 | . . . . 5 |
3 | ralbi 2988 | . . . . 5 | |
4 | 2, 3 | syl 16 | . . . 4 |
5 | 4 | ralimi 2850 | . . 3 |
6 | ralbi 2988 | . . 3 | |
7 | 5, 6 | syl 16 | . 2 |
8 | df-mpt2 6301 | . . . 4 | |
9 | df-mpt2 6301 | . . . 4 | |
10 | 8, 9 | eqeq12i 2477 | . . 3 |
11 | eqoprab2b 6355 | . . 3 | |
12 | pm5.32 636 | . . . . . . 7 | |
13 | 12 | albii 1640 | . . . . . 6 |
14 | 19.21v 1729 | . . . . . 6 | |
15 | 13, 14 | bitr3i 251 | . . . . 5 |
16 | 15 | 2albii 1641 | . . . 4 |
17 | r2al 2835 | . . . 4 | |
18 | 16, 17 | bitr4i 252 | . . 3 |
19 | 10, 11, 18 | 3bitri 271 | . 2 |
20 | 7, 19 | syl6rbbr 264 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 A. wral 2807 { coprab 6297 e. cmpt2 6298 |
This theorem is referenced by: homfeq 15089 comfeq 15101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |