Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2eq123i Unicode version

Theorem mpt2eq123i 6360
 Description: An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpt2eq123i.1
mpt2eq123i.2
mpt2eq123i.3
Assertion
Ref Expression
mpt2eq123i

Proof of Theorem mpt2eq123i
StepHypRef Expression
1 mpt2eq123i.1 . . . 4
21a1i 11 . . 3
3 mpt2eq123i.2 . . . 4
43a1i 11 . . 3
5 mpt2eq123i.3 . . . 4
65a1i 11 . . 3
72, 4, 6mpt2eq123dv 6359 . 2
87trud 1404 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395   wtru 1396  e.cmpt2 6298 This theorem is referenced by:  ofmres  6796  seqval  12118  dprdvalOLD  17036  oppgtmd  20596  sdc  30237  mendvscafval  31139  tgrpset  36471 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-oprab 6300  df-mpt2 6301
 Copyright terms: Public domain W3C validator