![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2ex | Unicode version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpt2ex.1 | |
mpt2ex.2 |
Ref | Expression |
---|---|
mpt2ex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2ex.1 | . 2 | |
2 | mpt2ex.2 | . . 3 | |
3 | 2 | rgenw 2818 | . 2 |
4 | eqid 2457 | . . 3 | |
5 | 4 | mpt2exxg 6874 | . 2 |
6 | 1, 3, 5 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 A. wral 2807
cvv 3109
e. cmpt2 6298 |
This theorem is referenced by: qexALT 11226 ruclem13 13975 vdwapfval 14489 prdsco 14865 imasvsca 14917 homffval 15086 comfffval 15093 comffval 15094 comfffn 15099 comfeq 15101 oppccofval 15111 monfval 15127 sectffval 15145 invffval 15152 cofu1st 15252 cofu2nd 15254 cofucl 15257 natfval 15315 fuccofval 15328 fucco 15331 coafval 15391 setcco 15410 catchomfval 15425 catccofval 15427 catcco 15428 xpcval 15446 xpchomfval 15448 xpccofval 15451 xpcco 15452 1stf1 15461 1stf2 15462 2ndf1 15464 2ndf2 15465 1stfcl 15466 2ndfcl 15467 prf1 15469 prf2fval 15470 prfcl 15472 prf1st 15473 prf2nd 15474 evlf2 15487 evlf1 15489 evlfcl 15491 curf1fval 15493 curf11 15495 curf12 15496 curf1cl 15497 curf2 15498 curfcl 15501 hof1fval 15522 hof2fval 15524 hofcl 15528 yonedalem3 15549 mgmnsgrpex 16049 sgrpnmndex 16050 grpsubfval 16092 mulgfval 16143 symgplusg 16414 lsmfval 16658 pj1fval 16712 dvrfval 17333 psrmulr 18037 psrvscafval 18043 evlslem2 18180 mamufval 18887 mvmulfval 19044 isphtpy 21481 pcofval 21510 q1pval 22554 r1pval 22557 motplusg 23929 midf 24142 ismidb 24144 ttgval 24178 ebtwntg 24285 ecgrtg 24286 elntg 24287 vsfval 25528 dipfval 25612 qqhval 27955 dya2iocuni 28254 sxbrsigalem5 28259 sitmval 28290 signswplusg 28512 mclsrcl 28921 mclsval 28923 mendplusgfval 31134 mendmulrfval 31136 mendvscafval 31139 estrcco 32636 cznrng 32763 cznnring 32764 rngchomfvalOLD 32792 rngccofvalOLD 32795 rngccoOLD 32796 ringchomfvalOLD 32855 ringccofvalOLD 32858 ringccoOLD 32859 ldualfvs 34861 paddfval 35521 tgrpopr 36473 erngfplus 36528 erngfmul 36531 erngfplus-rN 36536 erngfmul-rN 36539 dvafvadd 36740 dvafvsca 36742 dvaabl 36751 dvhfvadd 36818 dvhfvsca 36827 djafvalN 36861 djhfval 37124 hlhilip 37678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |