![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2mpt | Unicode version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpt2mpt.1 |
Ref | Expression |
---|---|
mpt2mpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5061 | . . 3 | |
2 | mpteq1 4532 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | mpt2mpt.1 | . . 3 | |
5 | 4 | mpt2mptx 6393 | . 2 |
6 | 3, 5 | eqtr3i 2488 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
{ csn 4029 <. cop 4035 U_ ciun 4330
e. cmpt 4510 X. cxp 5002 e. cmpt2 6298 |
This theorem is referenced by: fconstmpt2 6397 fnov 6410 fmpt2co 6883 xpf1o 7699 resfval2 15262 catcisolem 15433 xpccatid 15457 curf2ndf 15516 evlslem4OLD 18173 evlslem4 18174 mdetunilem9 19122 txbas 20068 cnmpt1st 20169 cnmpt2nd 20170 cnmpt2c 20171 cnmpt2t 20174 txhmeo 20304 txswaphmeolem 20305 ptuncnv 20308 ptunhmeo 20309 xpstopnlem1 20310 xkohmeo 20316 prdstmdd 20622 ucnimalem 20783 fmucndlem 20794 fsum2cn 21375 fimaproj 27836 idfusubc0 32591 lmod1zr 33094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |