![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2mptx | Unicode version |
Description: Express a two-argument
function as a one-argument function, or
vice-versa. In this version ( x ) is not assumed to
be constant
w.r.t . (Contributed by Mario Carneiro,
29-Dec-2014.) |
Ref | Expression |
---|---|
mpt2mpt.1 |
Ref | Expression |
---|---|
mpt2mptx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4512 | . 2 | |
2 | df-mpt2 6301 | . . 3 | |
3 | eliunxp 5145 | . . . . . . 7 | |
4 | 3 | anbi1i 695 | . . . . . 6 |
5 | 19.41vv 1772 | . . . . . 6 | |
6 | anass 649 | . . . . . . . 8 | |
7 | mpt2mpt.1 | . . . . . . . . . . 11 | |
8 | 7 | eqeq2d 2471 | . . . . . . . . . 10 |
9 | 8 | anbi2d 703 | . . . . . . . . 9 |
10 | 9 | pm5.32i 637 | . . . . . . . 8 |
11 | 6, 10 | bitri 249 | . . . . . . 7 |
12 | 11 | 2exbii 1668 | . . . . . 6 |
13 | 4, 5, 12 | 3bitr2i 273 | . . . . 5 |
14 | 13 | opabbii 4516 | . . . 4 |
15 | dfoprab2 6343 | . . . 4 | |
16 | 14, 15 | eqtr4i 2489 | . . 3 |
17 | 2, 16 | eqtr4i 2489 | . 2 |
18 | 1, 17 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ csn 4029 <. cop 4035 U_ ciun 4330
{ copab 4509 e. cmpt 4510
X. cxp 5002 { coprab 6297 e. cmpt2 6298 |
This theorem is referenced by: mpt2mpt 6394 mpt2mptsx 6863 dmmpt2ssx 6865 fmpt2x 6866 gsumcom2 17003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |