![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2sn | Unicode version |
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.) |
Ref | Expression |
---|---|
mpt2sn.f | |
mpt2sn.a | |
mpt2sn.b |
Ref | Expression |
---|---|
mpt2sn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsng 6072 | . . . 4 | |
2 | 1 | 3adant3 1016 | . . 3 |
3 | 2 | mpteq1d 4533 | . 2 |
4 | mpt2sn.f | . . . 4 | |
5 | mpt2mpts 6864 | . . . 4 | |
6 | 4, 5 | eqtri 2486 | . . 3 |
7 | 6 | a1i 11 | . 2 |
8 | op2ndg 6813 | . . . . . . 7 | |
9 | fveq2 5871 | . . . . . . . . 9 | |
10 | 9 | eqcomd 2465 | . . . . . . . 8 |
11 | 10 | eqeq1d 2459 | . . . . . . 7 |
12 | 8, 11 | syl5ibcom 220 | . . . . . 6 |
13 | 12 | 3adant3 1016 | . . . . 5 |
14 | 13 | imp 429 | . . . 4 |
15 | op1stg 6812 | . . . . . . 7 | |
16 | fveq2 5871 | . . . . . . . . 9 | |
17 | 16 | eqcomd 2465 | . . . . . . . 8 |
18 | 17 | eqeq1d 2459 | . . . . . . 7 |
19 | 15, 18 | syl5ibcom 220 | . . . . . 6 |
20 | 19 | 3adant3 1016 | . . . . 5 |
21 | 20 | imp 429 | . . . 4 |
22 | simp1 996 | . . . . . . 7 | |
23 | simpl2 1000 | . . . . . . . 8 | |
24 | mpt2sn.a | . . . . . . . . . 10 | |
25 | 24 | adantl 466 | . . . . . . . . 9 |
26 | mpt2sn.b | . . . . . . . . 9 | |
27 | 25, 26 | sylan9eq 2518 | . . . . . . . 8 |
28 | 23, 27 | csbied 3461 | . . . . . . 7 |
29 | 22, 28 | csbied 3461 | . . . . . 6 |
30 | 29 | adantr 465 | . . . . 5 |
31 | csbeq1 3437 | . . . . . . . 8 | |
32 | 31 | eqeq1d 2459 | . . . . . . 7 |
33 | 32 | adantl 466 | . . . . . 6 |
34 | csbeq1 3437 | . . . . . . . . 9 | |
35 | 34 | adantr 465 | . . . . . . . 8 |
36 | 35 | csbeq2dv 3835 | . . . . . . 7 |
37 | 36 | eqeq1d 2459 | . . . . . 6 |
38 | 33, 37 | bitrd 253 | . . . . 5 |
39 | 30, 38 | syl5ibrcom 222 | . . . 4 |
40 | 14, 21, 39 | mp2and 679 | . . 3 |
41 | opex 4716 | . . . 4 | |
42 | 41 | a1i 11 | . . 3 |
43 | simp3 998 | . . 3 | |
44 | 40, 42, 43 | fmptsnd 6093 | . 2 |
45 | 3, 7, 44 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 cvv 3109
[_ csb 3434 { csn 4029 <. cop 4035
e. cmpt 4510 X. cxp 5002 ` cfv 5593
e. cmpt2 6298 c1st 6798
c2nd 6799 |
This theorem is referenced by: mat1dim0 18975 mat1dimid 18976 mat1dimmul 18978 d1mat2pmat 19240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |