Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2snif Unicode version

Theorem mpt2snif 6396
 Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mpt2snif

Proof of Theorem mpt2snif
StepHypRef Expression
1 elsni 4054 . . . 4
 Colors of variables: wff setvar class Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  ifcif 3941  {csn 4029  e.cmpt2 6298 This theorem is referenced by:  mdetrsca2  19106  mdetrlin2  19109  mdetunilem5  19118  smadiadetglem2  19174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-if 3942  df-sn 4030  df-oprab 6300  df-mpt2 6301