![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpt2v | Unicode version |
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mpt2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt2 6301 | . 2 | |
2 | vex 3112 | . . . . 5 | |
3 | vex 3112 | . . . . 5 | |
4 | 2, 3 | pm3.2i 455 | . . . 4 |
5 | 4 | biantrur 506 | . . 3 |
6 | 5 | oprabbii 6352 | . 2 |
7 | 1, 6 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
{ coprab 6297 e. cmpt2 6298 |
This theorem is referenced by: 1st2val 6826 2nd2val 6827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |