Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2v Unicode version

Theorem mpt2v 6392
 Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpt2v
Distinct variable groups:   ,   ,   ,

Proof of Theorem mpt2v
StepHypRef Expression
1 df-mpt2 6301 . 2
2 vex 3112 . . . . 5
3 vex 3112 . . . . 5
42, 3pm3.2i 455 . . . 4
54biantrur 506 . . 3
65oprabbii 6352 . 2
71, 6eqtr4i 2489 1
 Colors of variables: wff setvar class Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  {coprab 6297  e.cmpt2 6298 This theorem is referenced by:  1st2val  6826  2nd2val  6827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-oprab 6300  df-mpt2 6301
 Copyright terms: Public domain W3C validator